阶跃函数的导数为什么是冲击函数 The derivative of heaviside step function is delta function

2024-06-06 10:18

本文主要是介绍阶跃函数的导数为什么是冲击函数 The derivative of heaviside step function is delta function,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果我今天没搞懂这个,我估计我会抑郁到不能睡觉。

heaviside step function 就是所谓的阶跃函数:

定义

图像:


dirac delta function 狄利克雷函数,通常所说的冲击函数:

定义:


函数图像:



提出问题:

为什么heaviside step 函数的导数就是 dirac delta 函数呢?


感觉上是挺“靠谱”。阶跃函数嘛,在0点左右两侧导数都是0,然后0点导数无穷大,和delta函数对应得很好。

数学不是所谓“靠谱”就能搞定的。要证明,当然。。。我个数学渣渣,证明完全不行,而且各种大牛都已经证明过了。

只是。。。证明过的我都差点没看懂。于是,留下这篇blog,叨叨这个“为什么”,以及这个证明过程中,

我遇到的困惑,和怎么解决的。


看看这段话吧,

If  D  is a distribution, we want to define another distribution  D , its distributional derivative. This done by declaring  D  by  (D)(f)=D(f)

more generally, the  n -th distributional derivative  D(n)  of  D  is defined by  (D(n))(f)=(1)n(f(n)) . This is ok, since we assumed the test functions  f  

to be infinitely differentiable; it follows that distributions are infinitely differentiable (in another, in this sense). Notice the minus sign. This is because 

we want distributional derivatives to extend the ordinary derivative, notice that if  d  is differentiable,  Rd(x)f(x)dx=Rd(x)f(x)dx  since the

 boundary term vanishes by the decay condition imposed on the test functions  f .


看懂了也就知道为什么了,如果没看懂,那这篇blog还可以继续看下去。。。


我遇到的问题就是为什么

会有如此“操蛋”的事情捏。。。。。完全不符合分布积分的公式哇。。。(v*u)' = v'*u + v*u'


之后是各种苦恼。


Nothing to it.


注意这里是用了分布积分公式的!只是有一项被略去了,因为等于0!


H(x)是阶跃函数,那个希腊字母(x)是速降函数(不知道什么叫速降函数,其实就是指数函数,系数是负数)

这两个函数的乘积在正负无穷远处的值都是0,于是正无穷处的值减去负无穷处的值,0 - 0 = 0

于是就有  0    



理所当然的就有了上面的积分等式


我们用一种简单的标记方式来表示 ---->      <a , b'>


于是

Rd(x)f(x)dx=Rd(x)f(x)


b的导数就是狄利克雷函数,有木有!b是什么,阶跃函数!

阶跃函数的导数就是狄利克雷函数,证明完毕!

开心,睡觉


The . L

 于 XTU  2014.03.13 凌晨

这篇关于阶跃函数的导数为什么是冲击函数 The derivative of heaviside step function is delta function的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035823

相关文章

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

Unity3D 运动之Move函数和translate

CharacterController.Move 移动 function Move (motion : Vector3) : CollisionFlags Description描述 A more complex move function taking absolute movement deltas. 一个更加复杂的运动函数,每次都绝对运动。 Attempts to

AutoGen Function Call 函数调用解析(一)

目录 一、AutoGen Function Call 1.1 register_for_llm 注册调用 1.2 register_for_execution 注册执行 1.3 三种注册方法 1.3.1 函数定义和注册分开 1.3.2 定义函数时注册 1.3.3  register_function 函数注册 二、实例 本文主要对 AutoGen Function Call

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^