《linux 内核完全剖析》 sys.c 代码分析

2024-06-06 10:08

本文主要是介绍《linux 内核完全剖析》 sys.c 代码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 sys.c 代码分析

 

 

setregid

/** This is done BSD-style, with no consideration of the saved gid, except* that if you set the effective gid, it sets the saved gid too.  This* makes it possible for a setgid program to completely drop its privileges,* which is often a useful assertion to make when you are doing a security* audit over a program.** The general idea is that a program which uses just setregid() will be* 100% compatible with BSD.  A program which uses just setgid() will be* 100% compatible with POSIX w/ Saved ID's.*/
int sys_setregid(int rgid, int egid)//设置real group ID ,effective group ID
{if (rgid>0) {if ((current->gid == rgid) ||suser())//如果当前进程的gid == real group ID 或者拥有超级用户权限,就可以把当前进程的group ID更改为 real Group ID current->gid = rgid;else //否则setregid是不允许的,返回错误值return(-EPERM);}if (egid>0) {if ((current->gid == egid) ||//如果当前进程的gid 或者effective gid 等于egid 或者拥有超级用户权限,则可以修改当前进程的egid和sgid(current->egid == egid) ||suser()) {current->egid = egid;current->sgid = egid;} elsereturn(-EPERM);}return 0;
}


setgid

/** setgid() is implemeneted like SysV w/ SAVED_IDS*/
int sys_setgid(int gid) //设置当前进程的group ID
{if (suser()) //有超级用户权限就可以更改当前进程的gid,egid(effective gid) ,sgid(saved gid)都设置为gidcurrent->gid = current->egid = current->sgid = gid;else if ((gid == current->gid) || (gid == current->sgid))//如果当前进程的sgid 或者gid(current) 等于 gid(传入参数) ,那么把当前进程的effective gid 设置为gidcurrent->egid = gid;elsereturn -EPERM;return 0;
}



 

sys_time

int sys_time(long * tloc) //设置系统时间
{int i;i = CURRENT_TIME;if (tloc) {verify_area(tloc,4);put_fs_long(i,(unsigned long *)tloc);}return i;
}


sys_setreuid

/** Unprivileged users may change the real user id to the effective uid* or vice versa.  (BSD-style)** When you set the effective uid, it sets the saved uid too.  This* makes it possible for a setuid program to completely drop its privileges,* which is often a useful assertion to make when you are doing a security* audit over a program.** The general idea is that a program which uses just setreuid() will be* 100% compatible with BSD.  A program which uses just setuid() will be* 100% compatible with POSIX w/ Saved ID's.*/
int sys_setreuid(int ruid, int euid) //uid == user ID 设置real 和 effective user ID
{int old_ruid = current->uid;if (ruid>0) {if ((current->euid==ruid) ||(old_ruid == ruid) ||suser())current->uid = ruid;elsereturn(-EPERM);}if (euid>0) {if ((old_ruid == euid) ||(current->euid == euid) ||suser()) {current->euid = euid;current->suid = euid;} else {current->uid = old_ruid;return(-EPERM);}}return 0;
}

setuid()


/** setuid() is implemeneted like SysV w/ SAVED_IDS** Note that SAVED_ID's is deficient in that a setuid root program* like sendmail, for example, cannot set its uid to be a normal* user and then switch back, because if you're root, setuid() sets* the saved uid too.  If you don't like this, blame the bright people* in the POSIX commmittee and/or USG.  Note that the BSD-style setreuid()* will allow a root program to temporarily drop privileges and be able to* regain them by swapping the real and effective uid.  */
int sys_setuid(int uid) //设置user ID
{if (suser())current->uid = current->euid = current->suid = uid;else if ((uid == current->uid) || (uid == current->suid))current->euid = uid;elsereturn -EPERM;return(0);
}int sys_stime(long * tptr) //设置系统时间
{if (!suser())return -EPERM;startup_time = get_fs_long((unsigned long *)tptr) - jiffies/HZ;jiffies_offset = 0;return 0;
}

sys_times

int sys_times(struct tms * tbuf) //获取系统时间把内核数据段的数据读到tbuf里去
{if (tbuf) {verify_area(tbuf,sizeof *tbuf);put_fs_long(current->utime,(unsigned long *)&tbuf->tms_utime);put_fs_long(current->stime,(unsigned long *)&tbuf->tms_stime);put_fs_long(current->cutime,(unsigned long *)&tbuf->tms_cutime);put_fs_long(current->cstime,(unsigned long *)&tbuf->tms_cstime);}return jiffies;
}

sys_brk

int sys_brk(unsigned long end_data_seg) //brk 数据段结尾
{if (end_data_seg >= current->end_code &&//如果end_data_seg大于当前进程的代码段结尾并且小于当前进程的(堆栈-16K),于是//把end_date_seg作为新的数据段结尾end_data_seg < current->start_stack - 16384)current->brk = end_data_seg;return current->brk;
}


sys_setpgid

/** This needs some heave checking ...* I just haven't get the stomach for it. I also don't fully* understand sessions/pgrp etc. Let somebody who does explain it.** OK, I think I have the protection semantics right.... this is really* only important on a multi-user system anyway, to make sure one user* can't send a signal to a process owned by another.  -TYT, 12/12/91*/
int sys_setpgid(int pid, int pgid)  
{int i;if (!pid)pid = current->pid;if (!pgid)pgid = current->pid;if (pgid < 0)return -EINVAL;for (i=0 ; i<NR_TASKS ; i++)if (task[i] && (task[i]->pid == pid) &&((task[i]->p_pptr == current) ||(task[i] == current))) {if (task[i]->leader)return -EPERM;if ((task[i]->session != current->session) ||((pgid != pid) &&(session_of_pgrp(pgid) != current->session)))return -EPERM;task[i]->pgrp = pgid;return 0;}return -ESRCH;
}


 getpgrp

int sys_getpgrp(void) //获得当前进程的pgrp == process group
{return current->pgrp;
}

setsid

int sys_setsid(void) //设置session ID
{if (current->leader && !suser()) //当前进程不是session leader或者拥有超级权限的话是无法更改session ID的return -EPERM;current->leader = 1; //当前进程被确认为session leadercurrent->session = current->pgrp = current->pid;current->tty = -1;return current->pgrp;
}


getgroups

/** Supplementary group ID's*/
int sys_getgroups(int gidsetsize, gid_t *grouplist)
//这里应该有问题,一个进程不可能属于多一个进程组
//原因很简单,一个进程的group id只能是一个值!这就约束了它就只能属于一个进程组!他的group leader只能有一个!
{int    i;if (gidsetsize)verify_area(grouplist, sizeof(gid_t) * gidsetsize);for (i = 0; (i < NGROUPS) && (current->groups[i] != NOGROUP);i++, grouplist++) {if (gidsetsize) {if (i >= gidsetsize)return -EINVAL;put_fs_word(current->groups[i], (short *) grouplist);}}return(i);
}

uname

static struct utsname thisname = {UTS_SYSNAME, UTS_NODENAME, UTS_RELEASE, UTS_VERSION, UTS_MACHINE
};int sys_uname(struct utsname * name) //获取系统名称信息
{int i;if (!name) return -ERROR;verify_area(name,sizeof *name);for(i=0;i<sizeof *name;i++)put_fs_byte(((char *) &thisname)[i],i+(char *) name);return 0;
}

sethostname

/** Only sethostname; gethostname can be implemented by calling uname()*/
int sys_sethostname(char *name, int len) //设置系统名词信息
{int    i;if (!suser())return -EPERM;if (len > MAXHOSTNAMELEN)return -EINVAL;for (i=0; i < len; i++) {if ((thisname.nodename[i] = get_fs_byte(name+i)) == 0)break;}if (thisname.nodename[i]) {thisname.nodename[i>MAXHOSTNAMELEN ? MAXHOSTNAMELEN : i] = 0;}return 0;
}

getrlimit


int sys_getrlimit(int resource, struct rlimit *rlim) //获取当前进程的资源界限值
{if (resource >= RLIM_NLIMITS)return -EINVAL;verify_area(rlim,sizeof *rlim);put_fs_long(current->rlim[resource].rlim_cur,(unsigned long *) rlim);put_fs_long(current->rlim[resource].rlim_max,((unsigned long *) rlim)+1);return 0;    
}

setrlimit


int sys_setrlimit(int resource, struct rlimit *rlim)
{struct rlimit new, *old;if (resource >= RLIM_NLIMITS)return -EINVAL;old = current->rlim + resource;new.rlim_cur = get_fs_long((unsigned long *) rlim);new.rlim_max = get_fs_long(((unsigned long *) rlim)+1);if (((new.rlim_cur > old->rlim_max) ||(new.rlim_max > old->rlim_max)) &&!suser())return -EPERM;*old = new;return 0;
}

umask

int sys_umask(int mask)//当设置当前进程创建文件的属性
{int old = current->umask;current->umask = mask & 0777;return (old);
}












 



这篇关于《linux 内核完全剖析》 sys.c 代码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035806

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码