【机器学习笔记2.5】用Softmax回归做二分类(Tensorflow实现)

2024-06-06 05:58

本文主要是介绍【机器学习笔记2.5】用Softmax回归做二分类(Tensorflow实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Softmax回归和逻辑回归的区别

  在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 y y y可以取两个以上的值[1]。当类别数 k = 2 k=2 k=2时,softmax 回归退化为 logistic 回归。

Softmax回归 vs. k个logistic回归

  如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?

  这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)

如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。

现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?

在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。

代码示例

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as pltdef loadDataSet(file_path):dataMat = []labelMat = []fr = open(file_path)for line in fr.readlines():lineArr = line.strip().split()dataMat.append([float(lineArr[0]), float(lineArr[1])])labelMat.append(int(lineArr[2]))return dataMat, labelMat# 加载数据
dataMat, labelMat = loadDataSet('testSet.txt')  # 《机器学习实战》逻辑回归中用的数据集
dataMat = np.mat(dataMat).astype(np.float32)
labelMat = np.mat(labelMat).transpose()# 制作one-hot格式的label
onehot_list = []
for i in range(len(labelMat)):onehot = [0, 0]onehot[labelMat[i].item()] = 1onehot_list.append(onehot)
labelMat = np.array(onehot_list).astype(np.float32)class_num = 2
threshold = 1.0e-2x_data = tf.placeholder("float32", [None, 2])
y_data = tf.placeholder("float32", [None, class_num])
weight = tf.Variable(tf.ones([2, class_num]))
bias = tf.Variable(tf.ones([class_num]))
y_model = tf.nn.softmax(tf.matmul(x_data, weight) + bias)loss = tf.reduce_sum(tf.pow((y_model - y_data), 2))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)step = 0
loss_buf = []
train_num = 70  # 一共就100个样本,拿出70个出来用于训练,剩下的30个用于测试
for _ in range(100):for data, label in zip(dataMat[0:train_num, :], labelMat[0:train_num, :]):label = label.reshape([1, 2])sess.run(train_step, feed_dict={x_data: data, y_data: label})step += 1'''if step % 10 == 0:print(step, sess.run(weight).flatten(), sess.run(bias).flatten())'''loss_val = sess.run(loss, feed_dict={x_data: data, y_data: label})print('loss_val = ', loss_val)loss_buf.append(loss_val)if loss_val <= threshold:flag = 0#print('weight = ', weight.eval(sess))# 测试准确率
correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(y_data, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x_data: dataMat[train_num+1:100, :], y_data: labelMat[train_num+1:100, :]}))
sess.close()# 画出loss曲线
loss_ndarray = np.array(loss_buf)
loss_size = np.arange(len(loss_ndarray))
plt.plot(loss_size, loss_ndarray, 'b+', label='loss')
plt.show()
print('end')

loss曲线:
enter image description here

疑问:怎样画出Softmax回归得到的分类直线?
答:会提出这样的问题应该是Softmax回归和逻辑回归的概念还没弄清楚。
(me)在Softmax回归中,输出结果是one-hot形式的向量,向量的每一维的输出非0即1,根据Softmax回归的假设模型 h θ ( x ( i ) ) h_{\theta}(x^{(i)}) hθ(x(i))可知,每一维的参数 θ j {\theta}_j θj都不相同,所以也不能像逻辑回归中那样画出一条分类直线了。

参考文献

[1] Softmax回归

这篇关于【机器学习笔记2.5】用Softmax回归做二分类(Tensorflow实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035276

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2