特征交叉系列:FM和深度神经网络的结合,DeepFM原理简述和实践

本文主要是介绍特征交叉系列:FM和深度神经网络的结合,DeepFM原理简述和实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从FM,FFM到DeepFM

在上两节中介绍了FM和FFM

这两种算法是推荐算法中经典的特征交叉结构,FM将特征交叉分解到底层属性,通过底层属性的点乘来刻画特征交叉的计算,而FFM引入特征域的概念,对不同的特征对所引用的底层属性进行隔离,避免导致多重特征交叉下,底层属性表征产生互相拉扯,导致表达矛盾。

在深度学习时代之前,FM结构是主流的推荐算法,而随着深度学习的到来,FM逐渐和DNN深度神经网络进行结合,即期望构建模型既可以拥有FM的二阶特征交互的学习能力,也能够像DNN那样能够学习特征间高阶的复杂关系,其中DeepFM是最经典的FM和DNN结合的例子。

DeepFM提出于2017年,由于网络中只有FM和简单DNN,因此易于快速实现作为业务场景的一个Baseline。


DeepFM网络结构解析

DeepFM的网络结构如下

DeepFM模型结构

模型结构中左侧部分是FM,右侧部分是DNN,底层的输入从一个业务特征Field转化为稀疏onehot的Sparse Feature特征,模型的前馈传播有三块计算网络:

    1. Sparse Feature特征直接进入左侧FM的一阶线性层,完成一个wx+b的操作返回一阶的结果,只有Sparse Feature有值的位置才会进行权重加和
    1. Sparse Feature特征进入Dense Embedding层进行稠密向量映射,映射后进入左侧FM,映射的结果作为FM的隐向量进行点乘操作得到FM的二阶输出
  • 3.Sparse Feature特征进入Dense Embedding层进行稠密向量映射,映射后进入右侧DNN,所有Field的映射结果进行拼接作为DNN的输入,经过2层DNN隐藏层输出结果

最终DeepFM的结果是三个计算流程的相加组合,注意FM的二阶和DNN的底层输入是共享的,共用了Dense Embedding层的结果,因此隐藏层的学习不仅要考虑适配FM的交叉,也要适配DNN的高阶复杂关系学习。


DeepFM在PyTorch下的实践

本次实践的数据集和上一篇[特征交叉系列:完全理解FM因子分解机原理和代码实战]一致,采用用户的购买记录流水作为训练数据,用户侧特征是年龄,性别,会员年限等离散特征,商品侧特征采用商品的二级类目,产地,品牌三个离散特征,随机构造负样本,一共有10个特征域,全部是离散特征,对于枚举值过多的特征采用hash分箱,得到一共72个特征。
PyTorch代码实现如下

import torch
import torch.nn as nn
from torch.utils.data import DataLoader, random_split, TensorDatasetclass Linear(nn.Module):def __init__(self, feat_num):super(Linear, self).__init__()self.embedding = nn.Embedding(feat_num, 1)self.bias = nn.Parameter(torch.zeros(1))nn.init.xavier_normal_(self.embedding.weight.data)def forward(self, x):# [None, field_dim] => [None, field, 1] => [None, 1]out = self.embedding(x).sum(dim=1) + self.biasreturn outclass Embedding(nn.Module):def __init__(self, feat_num, k_dim):super(Embedding, self).__init__()self.embedding = nn.Embedding(feat_num, k_dim)nn.init.xavier_uniform_(self.embedding.weight.data)def forward(self, x):return self.embedding(x)class FM(nn.Module):def __init__(self):super(FM, self).__init__()def forward(self, x):square_of_sum = torch.sum(x, dim=1) ** 2sum_of_square = torch.sum(x ** 2, dim=1)ix = square_of_sum - sum_of_square# [None, 1]out = 0.5 * torch.sum(ix, dim=1, keepdim=True)return outclass DNN(nn.Module):def __init__(self, input_dim, fc_dims=(64, 16), dropout=0.1):super(DNN, self).__init__()layers = list()for fc_dim in fc_dims:layers.append(nn.Linear(input_dim, fc_dim))layers.append(nn.BatchNorm1d(fc_dim))layers.append(nn.ReLU())layers.append(nn.Dropout(p=dropout))input_dim = fc_dimlayers.append(nn.Linear(input_dim, 1))self.mlp = torch.nn.Sequential(*layers)def forward(self, x):return self.mlp(x)class Model(nn.Module):def __init__(self, field_num, feat_num, k_dim, fc_dims=(64, 16), dropout=0.1):super(Model, self).__init__()self.linear = Linear(feat_num=feat_num)self.embedding = Embedding(feat_num, k_dim)self.fm = FM()self.fc_input_dim = field_num * k_dimself.dnn = DNN(self.fc_input_dim, fc_dims, dropout)def forward(self, x):linear_out = self.linear(x)# [None, feat_size, k_dim]emb = self.embedding(x)fm_out = self.fm(emb)dnn_out = self.dnn(torch.reshape(emb, [-1, self.fc_input_dim]))out = torch.sigmoid(linear_out + fm_out + dnn_out)return out.squeeze(dim=1)

本例全部是离散分箱变量,所有有值的特征都是1,因此只要输入有值位置的索引即可,一条输入例如

>>> train_data[0]
Out[120]: (tensor([ 2, 10, 14, 18, 34, 39, 47, 51, 58, 64]), tensor(0))

其中x的长度10代表10个特征域,每个域的值是特征的全局位置索引,从0到71,一共72个特征。其中FM和DNN共用了Embedding对象。


DeepFM和FM,FFM模型效果对比

采用验证集的10次AUC不上升作为早停,FM,FFM,DeepFM的平均验证集AUC如下

FMFFMDeepFM
AUC0.6260.6300.631

DeepFM相比FM增加了DNN结构,AUC提升了0.5个百分点较为明显,而对比FFM,DeepFM也有略微提升,提升0.1个百分点。

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

这篇关于特征交叉系列:FM和深度神经网络的结合,DeepFM原理简述和实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034293

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实