UVA - 11490 Just Another Problem (因数分解)

2024-06-05 21:32

本文主要是介绍UVA - 11490 Just Another Problem (因数分解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

There is a wise saying “Nothingis unfair in love and war”. Probably that is why emperors of ancient days usedto use many funny and clever tricks to fool the opponents. The most commontechnique was to scare the opponent away by out numbering them with imaginarysoldiers. One of the funnier tricks (though hard to believe) was to give theown soldiers (not the opponent soldiers!) mild laxative dose so that there is along queue of soldiers in front of toilet. Seeing this queue from a distancethe opponent would miscalculate the total number of soldiers and flee away.This was a famous trick given by famous clown of the sub-continent named Gopal(The infamous “Gopal Bhar” to be precise). Another most common trick was tohave square shaped holes while arranging the soldiers in rows and columns. Suchan arrangement is shown below with 96 soldiers.

 


Fig: A valid layout with 96 soldiers. After arranging them 8 soldiers are missing.

 

The strict property of sucharrangement for this problem is as follows:

 

(a)    The soldiershave to be arranged in rows and columns.

(b)   The border of thearrangement has to be rectangular.

(c)    The arrangementshould have soldiers missing only from the inner layers.

(d)   The soldiers should bemissing only from two equal square shaped regions. So the number of missingsoldiers should be twice of a strictly positive square number. In the figureabove the number of missing soldier is 2*22.

(e)    The thickness ofsoldiers should be equal every where (except the corners) in horizontal andvertical directions along the missing square. For example in the figure abovethe thickness of soldiers in horizontal and vertical directions along themissing square is always three. 

 

Now given the total number ofsoldiers S your job is to determine whether or not they can be arrangedaccording to the above mentioned rules.

 

Input

The input file contains 1000lines of inputs. Each line contains a positive integer S (S<1000000000000),where S is the total number of soldiers.

 

Input is terminated by linecontaining a single zero.

 

Output

For each line of input produceone or more line of output. Each line reports one possible number of possiblemissing soldiers which would enable the desired arrange with the S soldiers. Asthe number of possible missing soldiers can be quite large so instead of theactual number, the modulo 100000007 value should be printed. Also if there ismore than one possible value for number of missing soldiers the modulo100000007 values should be reported in descending order of the original numberof soldier (Not the modulo value). If no such number of missing soldiers isfound print the line “No Solution Possible” instead.

 

Print a blank line after theoutput for each line of input. Look at the output for sample input for details.

 

Sample Input                              Output for Sample Input

96

102

11100

0

Possible Missing Soldiers = 8

 

No Solution Possible

 

Possible Missing Soldiers = 553352

Possible Missing Soldiers = 308898

Possible Missing Soldiers = 45000

Possible Missing Soldiers = 3528

 


Problem Setter: ShahriarManzoor

Special Thanks: Syed MonowarHossain.

题意:你有S个士兵,并打算把他们排成一个r行c列的矩阵,但是可以有两个”洞“的矩形方队,方队的边界必须是都有人站,且每个洞的4个方向的”厚度“都是一样的,求可能缺失的人数

思路:设厚度为a,那么可以得到:(3a+2c)*(2a+c) = S + 2*c^2, 推出 6a^2+7ac = S,然后就是枚举a了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
typedef long long ll;
using namespace std;
const ll mod = 100000007;ll n;int main() {while (scanf("%lld", &n) != EOF && n) {ll m = sqrt(n/6+0.5);	int flag = 0;for (ll i = 1; i <= m; i++) {if ((n-6*i*i) % (7*i) == 0) {ll cur = (n-6*i*i) / (7*i);if (cur <= 0)continue;cur %= mod;flag = 1;printf("Possible Missing Soldiers = %lld\n", (2*(cur*cur%mod))%mod);}	}if (!flag)printf("No Solution Possible\n");printf("\n");}return 0;
}


这篇关于UVA - 11490 Just Another Problem (因数分解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034222

相关文章

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

uva 10055 uva 10071 uva 10300(水题两三道)

情歌两三首,水题两三道。 好久没敲代码了为暑假大作战热热身。 uva 10055 Hashmat the Brave Warrior 求俩数相减。 两个debug的地方,一个是longlong,一个是输入顺序。 代码: #include<stdio.h>int main(){long long a, b;//debugwhile(scanf("%lld%lld", &

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

uva 568 Just the Facts(n!打表递推)

题意是求n!的末尾第一个不为0的数字。 不用大数,特别的处理。 代码: #include <stdio.h>const int maxn = 10000 + 1;int f[maxn];int main(){#ifdef LOCALfreopen("in.txt", "r", stdin);#endif // LOCALf[0] = 1;for (int i = 1; i <=

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10916 Factstone Benchmark(打表)

题意是求 k ! <= 2 ^ n ,的最小k。 由于n比较大,大到 2 ^ 20 次方,所以 2 ^ 2 ^ 20比较难算,所以做一些基础的数学变换。 对不等式两边同时取log2,得: log2(k ! ) <=  log2(2 ^ n)= n,即:log2(1) + log2(2) + log2 (3) + log2(4) + ... + log2(k) <= n ,其中 n 为 2 ^