【Python特征工程系列】基于相关性分析的特征重要性分析(案例+源码)

2024-06-05 17:52

本文主要是介绍【Python特征工程系列】基于相关性分析的特征重要性分析(案例+源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是我的第295篇原创文章。

一、引言

      相关性分析提供了一种简单而直观的方法来初步筛选特征。通过计算特征与目标变量之间的相关系数,我们能够快速地评估各个特征与预测目标之间的线性关系强度。

      在统计学中,最常用的相关系数有两种:皮尔逊相关系数(Pearson correlation coefficient)和斯皮尔曼等级相关系数(Spearman's rank correlation coefficient)。皮尔逊相关系数用于衡量两个连续变量之间的线性相关程度,而斯皮尔曼相关系数则适用于评估两个变量的等级间的单调相关关系,特别适用于非线性关系的数据。

应用注意事项:

  • 相关性分析只能捕捉到线性关系或单调关系,对于复杂的非线性关系可能无法有效识别。

  • 高相关性并不意味着因果关系,有时候两个特征之间的高相关性可能只是因为它们共同受到第三个因素的影响。

二、实现过程

2.1 准备数据

data = pd.read_csv(r'dataset.csv')
df = pd.DataFrame(data)

图片

2.2 目标变量和特征变量

target = 'target'
features = df.columns.drop(target)

 特征变量如下:

图片

2.3 划分训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(df[features].values, df[target].values, test_size=0.2, random_state=0)

2.4 重构训练集数据

进行训练集数据重构:

train_X = pd.DataFrame(X_train, columns=features)
train_y = pd.DataFrame(y_train, columns=[target])
train = pd.concat([train_X, train_y],axis = 1)
print(train)

打印结果:

图片

2.5 相关性分析并可视化

代码:

sns.set(font_scale=1.2)
plt.rc('font',family=['SimSun'], size=12)
plt.figure(figsize=(10, 8))
plt.subplots_adjust()
ax = sns.heatmap(train.corr(), annot=True, xticklabels=False, fmt=".2f")
ax.set_title('相关性热力图')  # 图标题
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

结果:

图片

计算了这些属性之间的相关系数,并通过热力图的方式进行了可视化。通过热力图,我们可以直观地看到各属性与标签之间的相关性如何。

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

这篇关于【Python特征工程系列】基于相关性分析的特征重要性分析(案例+源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033762

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、