旋转矩阵简单可视化与平移向量方向问题探讨

2024-06-05 17:38

本文主要是介绍旋转矩阵简单可视化与平移向量方向问题探讨,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

接触了SLAM好久了,但是对于变换矩阵和平移矩阵始终觉得没有完全理解透彻,刚好碰到了因为理解导致的错误,就借此再整理一下!

直接开始!

1.只有平移时:

在这里插入图片描述
注意:不论在哪个坐标系中表示空间中的一个点,都不会改变这个点的位置,只是在不同的坐标系中,坐标值会不一样,请仔细理解一下!
O ′ − x ′ y ′ z ′ O'-x'y'z' Oxyz坐标系就是将 O − x y z O-xyz Oxyz坐标系沿着 y y y轴向右平移10个单位。
P w P_w Pw O − x y z O-xyz Oxyz坐标系下的坐标值为 [ 0 , 0 , 1 ] T [0,0,1]^T [0,0,1]T
P w P_w Pw O ′ − x ′ y ′ z ′ O'-x'y'z' Oxyz坐标系的坐标值为 [ 0 , − 10 , 1 ] T [0,-10,1]^T [0,10,1]T,并将该坐标值记做 P c P_c Pc
  
   P w P_w Pw在两个坐标系下坐标值的关系,可以用如下关系式表示: P c = R c w ∗ P w + t c w (0) P_c = R_{cw} * P_w + t_{cw} \tag 0 Pc=RcwPw+tcw(0)
由于上述两个坐标系并没有发生旋转变换,所以:
旋转矩阵 R c w = [ 1 0 0 0 1 0 0 0 1 ] R_{cw} = \left[\begin{matrix} 1&0&0 \\0&1&0\\0&0&1 \end{matrix}\right] Rcw=100010001,而平移向量 t c w = [ 0 , − 10 , 0 ] T t_{cw} = [0,-10,0]^T tcw=[0,10,0]T
我们可以发现平移向量 t c w t_{cw} tcw是一个 O ′ O' O指向 O O O的向量。

2.只有旋转时:

在这里插入图片描述
O − x y z O-xyz Oxyz坐标系绕着 y y y轴逆时针旋转 90 ° 90\degree 90°得到 O ′ − x ′ y ′ z ′ O'-x'y'z' Oxyz坐标系。同样的在 O − x y z O-xyz Oxyz坐标系下的一个点 P w = [ 0 , 0 , 1 ] T P_w = [0,0,1]^T Pw=[0,0,1]T,在 O ′ − x ′ y ′ z ′ O'-x'y'z' Oxyz坐标系下的坐标值为 P c = [ − 1 , 0 , 0 ] T P_c = [-1,0,0]^T Pc=[1,0,0]T,此时两个点之间的变换满足如下关系式子:
P c = R c w ∗ P w + t c w P_c = R_{cw}*P_w + t_{cw} Pc=RcwPw+tcw
R c w = [ c o s ( − 90 ) 0 s i n ( − 90 ) 0 1 0 − s i n ( − 90 ) 0 c o s ( − 90 ) ] R_{cw}= \left[\begin{matrix}cos(-90)& 0& sin(-90) \\ 0& 1& 0\\ -sin(-90)& 0& cos(-90) \end{matrix}\right] Rcw=cos(90)0sin(90)010sin(90)0cos(90), t c w = [ 0 , 0 , 0 ] T t_{cw}=[0,0,0]^T tcw=[0,0,0]T

即有旋转又有平移

在这里插入图片描述
O − x y z O-xyz Oxyz坐标系下,有一个点 P w = [ a , b , c ] T P_w=[a,b,c]^T Pw=[a,b,c]T,它在 O ′ − x ’ y ′ z ′ O'-x’y'z' Oxyz坐标系下的坐标为 P c = [ a ′ , b ′ , c ′ ] T P_c=[a',b',c']^T Pc=[a,b,c]T,同样的它也满足下式子:
P c = R c w ∗ P w + t c w P_c = R_{cw}*P_w + t_{cw} Pc=RcwPw+tcw
同样的平移向量 t c w t_{cw} tcw依然是 O ′ O' O指向 O O O

总结

由上面的简单过程,我们可以对 P c = R c w ∗ P w + t c w P_c = R_{cw}*P_w + t_{cw} Pc=RcwPw+tcw式子这样理解:
  
   R c w ∗ P w R_{cw}*P_w RcwPw表示将点 P w P_w Pw O − x y z O-xyz Oxyz坐标系下的坐标,旋转到 O ′ − x ′ y ′ z ′ O'-x'y'z' Oxyz坐标系下,也就是用 O ′ − x ′ y ′ z O'-x'y'z Oxyz坐标系下的坐标值来表示 P w P_w Pw点。有一点你需要注意,旋转完之后,两个坐标系的原点依然是重合,因为旋转矩阵不会导致平移。
  
  然后加上平移向量 t c w t_{cw} tcw,就完成了整个旋转和平移变换。对于平移向量方向是 O ‘ O‘ O指向 O O O,也就是变换完成之后的坐标系原点指向变换之前坐标系的原点。
  
  当然也有别的理解方式,找到自己习惯的就可以,你也可以自己画图一步一步理解!

这篇关于旋转矩阵简单可视化与平移向量方向问题探讨的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033730

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题

《解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题》本文主要讲述了在使用MyBatis和MyBatis-Plus时遇到的绑定异常... 目录myBATis-plus-boot-starpythonter与mybatis-spring-b

mysql主从及遇到的问题解决

《mysql主从及遇到的问题解决》本文详细介绍了如何使用Docker配置MySQL主从复制,首先创建了两个文件夹并分别配置了`my.cnf`文件,通过执行脚本启动容器并配置好主从关系,文中还提到了一些... 目录mysql主从及遇到问题解决遇到的问题说明总结mysql主从及遇到问题解决1.基于mysql

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har

MAVEN3.9.x中301问题及解决方法

《MAVEN3.9.x中301问题及解决方法》本文主要介绍了使用MAVEN3.9.x中301问题及解决方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录01、背景02、现象03、分析原因04、解决方案及验证05、结语本文主要是针对“构建加速”需求交

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核