并查集与克鲁斯卡尔算法详解

2024-06-05 12:28

本文主要是介绍并查集与克鲁斯卡尔算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

并查集的常见用途:求连通子图;克鲁斯卡尔算法;求最近公共祖先

三个基本操作:(1)makeSet:建立一个新的并查集,其中包含s个单元素的集合;

(2)unionSet(x,y):把元素x和y所在的集合合并,并且x,y所在的集合不相交,如果相交则不合并;

(3)find(x):找到x所在的集合的代表,该操作可以用于判断两个元素是否位于同一个集合,只要比较它们各自集合的代表就可以;(什么是集合的代表)?

实现:用树来表示集合,树的每个结点就表示集合中的一个元素,树根对应的元素就是该集合的代表。

树的结点表示集合中的元素,指针表示指向父节点的指针,根结点的指针指向自己,表示其没有父节点。沿着每个节点的父节点不断向上查找,最终就可以找到根结点,也就是该集合的代表元素;

makeSet:就是建立一个数组,并赋初值,利用循环;

find 操作:如果每次都沿着父节点向上查找,那么时间复杂度就是树的高度,不可能达到常数级;

我们在这里需要采用一种策略:——路径压缩

路径压缩就体现在将所有的节点的父亲节点都变为根结点;

unsionSet操作:并查集的合并,就是将一个集合的树根指向另一个集合的树根;

合并的原则:按秩合并,使用秩来表示树高度的上界,在合并时,总是将具有较小秩的树根指向具有较大秩的树根,简单的说就是总是将比较矮的树作为子树,添加到较高的树中,为了保存秩,需要额外使用一个与uset同长度的数组,并将所有的元素都初始化为0;//这个秩不太好理解;

第二种方式:按集合中包含的元素个数(或者说树中的节点数)合并,将包含节点较少的树根,指向包含节点较多的树根。这个策略与按秩合并的策略类似,同样可以提升并查集的运行速度,而且省去了额外的 rank 数组。

这样的并查集具有一个略微不同的定义,即若 uset 的值是正数,则表示该元素的父节点(的索引);若是负数,则表示该元素是所在集合的代表(即树根),而且值的相反数即为集合中的元素个数。相应的代码如下所示,同样包含递归和非递归的 find 操作:

这里不需要设立rank数组;

void UFset() // 初始化{for (int i = 0; i < n; i ++)parent[i] = -1;}int Find(int x)  // 查找并返回结点x所属集合的根结点{int s;    // 查找位置for (s = x; parent[s]>=0; s = parent[s]);  // 注意这里的 ;while (s != x)   // 优化方案 -- 压缩路径,使后续的查找{int tmp = parent[x];parent[x] = s;x = tmp;}return s;}// R1和R2是两个元素,属于两个不同的集合,现在合并这两个集合void Union (int R1, int R2){// r1位R1的根结点,r2位R2的根结点int r1 = Find(R1), r2 = Find(R2);int tmp = parent[r1] + parent[r2];   // 两个集合的结点个数之和(负数)//每添加一个节点,就将其parent更新为tmp,也就意味着其个数增加1;//一个边对应两个点,每次只对两个点进行操作,所以可以加1;只更新顶点的parent,//一开始是所有的顶点都可以作为集合的代表// 如果R2所在树结点个数 > R1所在树结点个数// 注意parent[r1]和parent[r2]都是负数if(parent[r1] > parent[r2])    // 优化方案 -- 加权法则{parent[r1] = r2;        // 将根结点r1所在的树作为r2的子树(合并)parent[r2] = tmp;       // 跟新根结点r2的parent[]值}else{parent[r2] = r1;         // 将根结点r2所在的树作为r1的子树(合并)parent[r1] = tmp;        // 跟新根结点r1的parent[]值}}

二.克鲁斯卡尔算法

最小生成树之克鲁斯卡尔(Kruskal)算法 - gaoyanliang - 博客园 (cnblogs.com)

但是其实并查集只是按照顺序加边,没有比较边的权值这一过程,所以如果我们按照边的值从小到达进行排列的话,我们就只需要前面几条较小的边就能将所有的节点连接起来,最终得到最小的生成树;

sort函数的实现:根据cmp的结果,设置:是否交换

//在C语言中:利用qsort函数,直接对edge类型的数组中的weigjt进行排序;

#include <stdio.h> #include <stdlib.h> // 假设edges是一个整数数组,我们要根据整数的大小进行排序 int cmpfunc(const void *a, const void *b){ return (*(int*)a - *(int*)b); } int main() { int edges[] = {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5}; int m = 5; // 假设我们只想对前5个元素进行排序 // 注意:qsort会排序整个数组,但我们可以通过调整传入的元素数量来限制它的范围// 由于qsort没有直接的“开始索引”和“结束索引”参数,我们通常传递整个数组,但只在比较函数中处理我们关心的部分// 如果我们真的只想对前m个元素进行排序,并且这些元素之后的数据我们不想改变, // 那么我们需要复制前m个元素到一个新数组,对新数组进行排序,然后再复制回去。 // 但这里为了简单起见,我们直接对整个数组进行排序。// 使用qsort进行排序 qsort(edges, sizeof(edges) / sizeof(edges[0]), sizeof(int), cmpfunc); // 打印排序后的数组 for(int i = 0; i < sizeof(edges) / sizeof(edges[0]); i++) { printf("%d ", edges[i]); } return 0; }

在这里u,v表示的时一个边的两个顶点//——体现加边法这一特点;

因此在for循环中,循环的次数最多的给的是m——即为图的边数,而不是顶点数,区别于普利姆算法;

直到所有的顶点都加入到了一个集合中;

所以只要把并查集搞清楚,就能很容易地实现克鲁斯卡尔算法。

这篇关于并查集与克鲁斯卡尔算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033046

相关文章

CSS will-change 属性示例详解

《CSSwill-change属性示例详解》will-change是一个CSS属性,用于告诉浏览器某个元素在未来可能会发生哪些变化,本文给大家介绍CSSwill-change属性详解,感... will-change 是一个 css 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.

前端高级CSS用法示例详解

《前端高级CSS用法示例详解》在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交互和动态效果的关键技术之一,随着前端技术的不断发展,CSS的用法也日益丰富和高级,本文将深... 前端高级css用法在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip