本文主要是介绍Domain Adaptation 2019 Conference Papers,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
本文为转载文章,转自链接: https://blog.csdn.net/weixin_40400177/article/details/103538656
Abbreviation | Paper Title | Source Link | Code | Tags |
---|---|---|---|---|
DTA | Drop to Adapt: Learning Discriminative Features for Unsupervised Domain Adaptation | ICCV2019 | PyTorch(Official) | DTA Adversarial Dropout |
BSP | Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain Adaptation | ICML2019 | Pytorch(Official) | LDA-SVD->BSP Between-class Within-class |
DEV | Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation | ICML2019 | sklearn(Official) | Density-Ratio-Estimation Variance-Reduction |
Zhao’s | On Learning Invariant Representation for Domain Adaptation | ICML2019 | Code(empty) | Theory Conditional-Shfit Information-Theoretic-Lower-Bound |
Wu’s | Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment | ICML2019 | Theory Label-Shift Asymmetrically-Relaxed-Distances | |
MDD | Bridging Theory and Algorithm for Domain Adaptation | ICML2019 | Pytorch(Official) | Theory Margin-Disparity-Discrepancy Rademacher-Complexity |
CADA | Attending to Discriminative Certainty for Domain Adaptation | CVPR2019 arXiv | Code(Empty) | Region-Adaptation Bayesian-Framework Attention |
d-SNE | d-SNE: Domain Adaptation Using Stochastic Neighborhood Embedding | CVPR2019 Oral arXiv | MXNet-Gluon(Official) | Hausdorff-Distance Domain-Generalization |
GCAN | GCAN: Graph Convolutional Adversarial Network for Unsupervised Domain Adaptation | CVPR2019 | Structureaware-Alignment Domain-Alignment Class-Centroid-Alignment | |
GIO-Ada | Learning Semantic Segmentation From Synthetic Data: A Geometrically Guided Input-Output Adaptation Approach | CVPR2019 | Geometric-Information Adversarial-Training Depth-and-Semantic-Prediction | |
DISE | All about Structure: Adapting Structural Information across Domains for Boosting Semantic Segmentation | CVPR2019 | Pytorch(Official) | Domain-Invariant-Structure Domain-Specific-Representations |
DSBN | Domain-Specific Batch Normalization for Unsupervised Domain Adaptation | CVPR2019 | Batch-Normalization Pseudo-Labels | |
DWT | Unsupervised Domain Adaptation using Feature-Whitening and Consensus Loss | CVPR2019 | Min-Entropy Consensus loss Domain-Alignment-Layer | |
BDL | Bidirectional Learning for Domain Adaptation of Semantic Segmentation | CVPR2019 | Pytorch(Official) | Image-Translation Alternative Learning Perceptual-Loss |
CAN | Contrastive Adaptation Network for Unsupervised Domain Adaptation | CVPR2019 | Intra-Class-Discrepancy Inter-Class-Discrepancy CDD-Metric | |
GPDA | Unsupervised Visual Domain Adaptation: A Deep Max-Margin Gaussian Process Approach | CVPR2019 Oral | MCD->GP Classifier’s-Posterior-Distribution | |
Tran’s | Joint Pixel and Feature-level Domain Adaptation in the Wild | CVPR2019 | Combining-Many-Method | |
UAN | Universal Domain Adaptation | CVPR2019 | Sample-Level Partial and Open Set | |
ADVENT | ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation | CVPR2019 Oral | Code(Empty) | Meta-Sub-Target |
AMEAN | Blending-Target Domain Adaptation by Adversarial Meta-Adaptation Networks | CVPR2019 Oral | Pytorch(Official) | Multiple Sub-targets Category-Misalignment |
TPN | Transferrable Prototypical Networks for Unsupervised Domain Adaptation | CVPR2019 Oral | Non-linear-Mapping Pseudo-Label Score-Distribution | |
PFAN | Progressive Feature Alignment for Unsupervised Domain Adaptation | CVPR2019 | Intra-Class-Variation Adaptive-Prototype-Alignment Non-Saturated-Classifier | |
SymNets | Domain-Symmetric Networks for Adversarial Domain Adaptation | CVPR2019 | Pytorch(Official) | Symmetric-Classifiers Domain-Confusion Category-Level |
CLAN | Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation | CVPR2019 Oral | Pytorch(Official) | Category-Level Co-training |
SWD | Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation | CVPR2019 | Wasserstein-Discrepancy |
这篇关于Domain Adaptation 2019 Conference Papers的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!