本文主要是介绍uva 11123 - Counting Trapizoid(容斥+几何),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目链接:uva 11123 - Counting Trapizoid
题目大意:给定若干个点,问有多少种梯形,不包括矩形,梯形的面积必须为正数。因为是点的集合,所以不会优重复的点。
解题思路:枚举两两点,求出该条直线,包括斜率k,偏移值c,以及长度l。已知梯形的性质,一对对边平行,也就是说一对平行但是不相等的边。
所以将所有线段按照斜率排序,假设对于某一斜率,有m条边,那么这m条边可以组成的含平行对边的四边形有C(2m),要求梯形还要减掉长度相同以及共线的情况,分别对应的是l相同和c相同,但是根据容斥原理,要加回l和c均相等的部分。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>using namespace std;
const int N = 205;
const double eps = 1e-9;
const double pi = 4 * atan(1.0);struct line {double k, c, l;line (double k, double c = 0, double l = 0) {this->k = k;this->c = c;this->l = l;}friend bool operator < (const line& a, const line& b) {return a.k < b.k;}
};struct state {double c, l;state (double c, double l) {this->c = c;this->l = l;}
};int n;
double x[N], y[N];
vector<line> set;
vector<state> g;inline double distant (double xi, double yi) {return xi * xi + yi * yi;
}inline double cal (int a, int b) {if (x[a] == x[b])return x[a];return y[a] - x[a] * ( (y[a] - y[b]) / (x[a] - x[b]) );
}inline int C (int a) {if (a < 1)return 0;return a * (a - 1) / 2;
}inline bool cmpC (const state& a, const state& b) {if (fabs(a.c-b.c) > eps)return a.c < b.c;return a.l < b.l;
}inline bool cmpL (const state& a, const state& b) {return a.l < b.l;
}int judge () {sort(g.begin(), g.end(), cmpC);int ans = 0, cnt = 1, tmp = 1;/*for (int i = 0; i < g.size(); i++) {printf("%lf %lf\n", g[i].c, g[i].l);}printf("\n");*/for (int i = 1; i < g.size(); i++) {if (fabs(g[i].c - g[i-1].c) > eps) {ans = ans + C(cnt) - C(tmp);cnt = 0;tmp = 0;}if (fabs(g[i].l - g[i-1].l) > eps) {ans = ans - C(tmp);tmp = 0;}tmp++;cnt++;}ans = ans + C(cnt) - C(tmp);sort(g.begin(), g.end(), cmpL);cnt = 1;for (int i = 1; i < g.size(); i++) {if (fabs(g[i].l - g[i-1].l) > eps) {ans = ans + C(cnt);cnt = 0;}cnt++;}ans = ans + C(cnt);return ans;
}int solve () {int ans = 0;if (set.size() == 0)return 0;g.clear();g.push_back(state(set[0].c, set[0].l));for (int i = 1; i < set.size(); i++) {//printf("%d %lf!!!!!!!\n", i, set[i].k);if (fabs(set[i].k - set[i-1].k) > eps) {ans += C(g.size()) - judge();g.clear();}g.push_back(state(set[i].c, set[i].l));}ans += C(g.size()) - judge();return ans;
}int main () {int cas = 1;while (scanf("%d", &n) == 1 && n) {set.clear();for (int i = 0; i < n; i++) {scanf("%lf%lf", &x[i], &y[i]);for (int j = 0; j < i; j++)set.push_back(line( atan2(y[j]-y[i], x[j]-x[i]), cal(i, j), distant(y[i]-y[j], x[i]-x[j]) ));}for (int i = 0; i < set.size(); i++) {if (set[i].k < eps)set[i].k += pi;}sort(set.begin(), set.end());/*for (int i = 0; i < set.size(); i++) {printf("%d %lf %lf %lf\n", i, set[i].k, set[i].c, set[i].l);}*/printf("Case %d: %d\n", cas++, solve());}return 0;
}
这篇关于uva 11123 - Counting Trapizoid(容斥+几何)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!