计算机视觉全系列实战教程:(七)opencv的improc模块基本介绍

本文主要是介绍计算机视觉全系列实战教程:(七)opencv的improc模块基本介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.颜色转换

  • A.函数转换函数原型:
void cv::cvtColor(cv::InputArray src, // 输入序列cv::OutputArray dst, // 输出序列int code, // 颜色映射码int dstCn = 0 // 输出的通道数 (0='automatic')
);
  • B.基本使用:
cv::Mat imGray;
cv::cvtColor(imBGR, imGray, cv::COLOR_BGR2GRAY); //转为灰度图像
cv::Mat imHsv;
cv::cvtColor(imBGR, imHsv, cv::COLOR_BGR2HSV); //转为HSV图像
  • C.参数介绍:
// BGR和RGB相互转换
cv::COLOR_BGR2RGB
cv::COLOR_RGB2BGR
cv::COLOR_RGBA2BGRA
cv::COLOR_BGRA2RGBA
// 添加和去除alpha通道
cv::COLOR_BGR2BGRA
cv::COLOR_RGB2RGBA
cv::COLOR_BGRA2BGR
cv::COLOR_RGBA2RGB

2.绘制基本图形

(1)绘制矩形

void cv::rectangle	(	InputOutputArray 	img, //在img中绘制矩形Point 	PLeftTop, //矩形的左上角Point 	PRgtBtm, //矩形的右下角const Scalar & 	color, //矩形框的颜色int 	thickness = 1, //线的宽度int 	lineType = LINE_8, //线的类型int 	shift = 0 //坐标中的小数位数
)

(2)绘制圆形

void circle( Mat img, cv::Point center, //圆形int radius, //半径cv::Scalar color, //圆形线条的颜色 int thickness=1,  //圆形线条的宽度,负数表示填充,正数表示宽度int line_type=8, //线条的种类int shift=0 //圆心和半径的小数位数);

(3)绘制椭圆

void ellipse(Mat img,Point PCenter, //椭圆中心Size size, //长轴和短轴的长度double angle, //椭圆旋转角度double startAngle, //开始角度double endAngle, //终止角度Scalar &color, //椭圆线条的颜色int thickness = 1, //椭圆线条的宽度,负数表示填充int line_type = 8, //线条类型int shift = 0 //圆心和轴坐标的精度(小数的位数))

(4)绘制线段

void line(Mat img,Point PStart, //线段起点坐标Point PEnd, //线段终点坐标Scalar &color, //线段颜色int thichness = 1, int line_type = 8, int shift =  0)

(5)绘制文字

void putText(Mat &img,const string &text,Point POrigin, //文本框的左下角int fontFace, //字体,如FONT_HERAHEY_PLAINdouble fontScale, //尺寸因子,越大则文字越大Scalar color, //文字颜色int thickness = 1, //线条粗细int lineType = 8, //线条类型(8邻域和4领域)boo

3.随机数使用

  • (1)基本用法
//创建RNG对象 RNG rng(uint64 seed);
cv::RNG rng(time(NULL));
int iNum01 = rng; //返回第一个随机数
int iNum02 = rng.next(); //返回下一个随机数
int iNum03 = rng.operator()(); //等价于next()
int iNum04 = rng.operator()(100); //[0,100)范围内的随机数
double dNum05 = rng.operator double(); //返回下一个double数值
  • (2)生成分布数据
double a = rng.uniform(0,1);//产生一个均匀分布的double数据
double b = rng.gaussian(0.f, 1.f);//高斯分布的double数据,均值为0,方差为1.0

(3)使用随机数填充矩阵

  • A.函数原型
void fill(Mat img,int distType, //均匀分布(UNIFORM),高斯分布(NORMAL)InputArray a, InputArray b, //与对应的分布有关,如均匀分布表示均匀分布的区间bool saturateRange = false //只针对均匀分布有效);
  • B.使用方法
// 均匀分布cv::Mat_<double> matTmp(5, 5);cv::RNG rng;rng.fill(matTmp, cv::RNG::UNIFORM, 1 , 3);
// 正态分布
cv::Mat_<float> matTmp02(5, 5);
rng.fill(matTmp02, cv::RNG::NORMAL, 1, 3);

4.为图像添加边框

  • A.函数原型
void copyMakeBorder(cv::Mat &imSrc, //输入图像cv::Mat &imDst, //输出图像int top, //顶部填充像素数量int bottom,int left, int right,int borderType, //填充类型,如BORDER_REPLICATE, BORDER_REFLECT_101, BORDER_CONSTANT等const Scalar &value = Scalar() //默认值即可);
  • B.参数介绍(borderType)
		BORDER_CONSTANT    = 0, //!< `iiiiii|abcdefgh|iiiiiii`  with some specified `i`BORDER_REPLICATE   = 1, //!< `aaaaaa|abcdefgh|hhhhhhh`BORDER_REFLECT     = 2, //!< `fedcba|abcdefgh|hgfedcb`BORDER_WRAP        = 3, //!< `cdefgh|abcdefgh|abcdefg`BORDER_REFLECT_101 = 4, //!< `gfedcb|abcdefgh|gfedcba`BORDER_TRANSPARENT = 5, //!< `uvwxyz|abcdefgh|ijklmno`

5.查找轮廓

(1)概述

对灰度图像、二值图像进行边缘提取(通常是二值图像)进行轮廓提取。

void findContours(Mat &imGray, //单通道图像vector<vector<Point>> &vCntsOut, //轮廓组(输出参数)OutputArray &hierarchy, //包含抽取图像的拓扑信息int mode, //轮廓提取模式,如CV_RETR_EXTERNAL, CV_RETR_LIST, CV_RETR_CCOMP等int method, //轮廓的近似方法,如CV_CHAIN_APPROX_NONE, CV_CHAIN_APPROX_SIMPLE等Point offset=Point() //轮廓的偏移量);

(2)使用

//读取图像
cv::Mat imRead = cv::imread("xxx.jpeg");
//高斯去噪
cv::GaussianBlur(imread, imread, cv::Size(3,3), 0);
//提取图像边缘
cv::Mat imEdge;
cv::Canny(imRead, imEdge, 30, 100);
//提取轮廓
std::vector<std::vector<cv::Point>> vCnts;
std::vector<cv::Vec4i> hierarchy;
cv::findContours(imEdge,vCnts,hierarchy,RETR_TREE,CHAIN_APPROX_SIMPLE);

(3)绘制轮廓

void cv::drawContours(cv::Mat &imSrc,InputArrayOfArrays vCnts,int contourIdx, //绘制轮廓向量中哪一个索引,负数表示绘制所有轮廓const cv::Scalar &color, //绘制的颜色int thickness = 1, //宽度,负数表示填充轮廓int lineType =8, InputArray hierarchy = noArray(), //findContours输出的向量int maxLevel = INT_MAX, //绘制轮廓的最高等级,有heirarchy时才生效cv::Point offset);

这篇关于计算机视觉全系列实战教程:(七)opencv的improc模块基本介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031912

相关文章

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

C#连接SQL server数据库命令的基本步骤

《C#连接SQLserver数据库命令的基本步骤》文章讲解了连接SQLServer数据库的步骤,包括引入命名空间、构建连接字符串、使用SqlConnection和SqlCommand执行SQL操作,... 目录建议配合使用:如何下载和安装SQL server数据库-CSDN博客1. 引入必要的命名空间2.

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

zookeeper端口说明及介绍

《zookeeper端口说明及介绍》:本文主要介绍zookeeper端口说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、zookeeper有三个端口(可以修改)aVNMqvZ二、3个端口的作用三、部署时注意总China编程结一、zookeeper有三个端口(可以

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查