YOLOX源码之【数据缓存】

2024-06-05 02:52
文章标签 数据 源码 缓存 yolox

本文主要是介绍YOLOX源码之【数据缓存】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里首先需要了解下装饰器 - 廖雪峰的官方网站的用法,后面会用到。

如果cache=True,在launch前就调用get_dataset,否则launch后再调用get_dataset。

函数get_dataset调用COCODataset类,并赋给self.dataset。COCODataset继承自CacheDataset,CacheDataset继承自Dataset,Dataset继承自torch.utils.data.data.Dataset。

COCODataset在__init__中super().__init__()初始化父类CacheDataset,CacheDataset在__init__中调用self.cache_images进行缓存图片操作,代码如下。

def cache_images(self,num_imgs=None,data_dir=None,cache_dir_name=None,path_filename=None,
):assert num_imgs is not None, "num_imgs must be specified as the size of the dataset"if self.cache_type == "disk":assert (data_dir and cache_dir_name and path_filename) is not None, \"data_dir, cache_name and path_filename must be specified if cache_type is disk"self.path_filename = path_filenamemem = psutil.virtual_memory()  # 获取系统虚拟内存信息mem_required = self.cal_cache_occupy(num_imgs)gb = 1 << 30  # 1 << 30 == 2^30 == (2^10)^3 == 1024^3# 1 << 30将二进制数1左移30位,其余位都为0。2^30的二进制表示是在最高位为1,其余位都为0的二进制数,即10后面跟着30个0。因此1 << 30 == 2^30if self.cache_type == "ram":if mem_required > mem.available:self.cache = Falseelse:logger.info(f"{mem_required / gb:.1f}GB RAM required, "f"{mem.available / gb:.1f}/{mem.total / gb:.1f}GB RAM available, "f"Since the first thing we do is cache, "f"there is no guarantee that the remaining memory space is sufficient")if self.cache and self.imgs is None:if self.cache_type == 'ram':self.imgs = [None] * num_imgslogger.info("You are using cached images in RAM to accelerate training!")else:   # 'disk'if not os.path.exists(self.cache_dir):os.mkdir(self.cache_dir)logger.warning(f"\n*******************************************************************\n"f"You are using cached images in DISK to accelerate training.\n"f"This requires large DISK space.\n"f"Make sure you have {mem_required / gb:.1f} "f"available DISK space for training your dataset.\n"f"*******************************************************************\\n")else:logger.info(f"Found disk cache at {self.cache_dir}")returnlogger.info("Caching images...\n""This might take some time for your dataset")num_threads = min(8, max(1, os.cpu_count() - 1))b = 0load_imgs = ThreadPool(num_threads).imap(partial(self.read_img, use_cache=False),  # 偏函数,固定参数use_cache=False# 这里是partial的一个神奇用法,修改装饰器的参数range(num_imgs))  # 这里load_imgs是一个迭代器pbar = tqdm(enumerate(load_imgs), total=num_imgs)for i, x in pbar:   # x = self.read_img(self, i, use_cache=False)if self.cache_type == 'ram':self.imgs[i] = xelse:   # 'disk'cache_filename = f'{self.path_filename[i].split(".")[0]}.npy'cache_path_filename = os.path.join(self.cache_dir, cache_filename)os.makedirs(os.path.dirname(cache_path_filename), exist_ok=True)np.save(cache_path_filename, x)b += x.nbytespbar.desc = \f'Caching images ({b / gb:.1f}/{mem_required / gb:.1f}GB {self.cache_type})'pbar.close()

缓存有ram和disk两种类型,ram是一次性将训练集中所有图片读取完放到一个列表中赋给self.imgs,disk是读取每张图片并以.npy格式保存到硬盘中。首先通过psutil.virtual_memory()获取系统虚拟内存信息,然后调用self.cal_cache_occupy()计算训练集中所有图片占用内存大小。然后用多线程的方式读取图片。

这里需要特别介绍一下读取图片的操作。首先functools.partial的作用是在原始函数的基础上固定某些参数创建一个新的可调用对象,这个新的可调用对象可以像原始函数一样被调用,但是某些参数已经被预先设置好了。下面是一个例子,在这个例子中,partial(add, 5)创建了一个新的函数add_five,它实际上是add函数的一个版本,只不过把第一个参数固定为5。这样当我们调用add_five(3)时,实际上是调用add(5, 3),所以结果是8。

from functools import partialdef add(x, y):return x + y# 使用partial固定第一个参数
add_five = partial(add, 5)print(add_five(3))  # 输出 8

partial(self.read_img, use_cache=False)调用的self.read_img在COCODataset中实现,并且将参数use_cache固定为False,但是我们看到函数read_img并没有入参use_cache,而装饰器@cache_read_img有入参use_cache,这里是partial的一个特别的用法,即可以改变装饰器的自身的参数。

@cache_read_img(use_cache=True)
# 实际调用的是cache_read_img(use_cache=True)(read_img)(self, index)
def read_img(self, index):return self.load_resized_img(index)

装饰器cache_read_img的实现如下,可以看到当use_cache=True时根据缓存类型从ram或disk中读取图片,当use_cache=False时调用被装饰函数read_img读取图片。这里本身就是在进行缓存图片的操作,图片还没缓存呢当然就不能从缓存中读取图片了。 

def cache_read_img(use_cache=True):def decorator(read_img_fn):"""Decorate the read_img function to cache the imageArgs:read_img_fn: read_img functionuse_cache (bool, optional): For the decorated read_img function,whether to read the image from cache.Defaults to True."""@wraps(read_img_fn)  # 保持被装饰函数read_img_fn的__name__属性不变def wrapper(self, index, use_cache=use_cache):cache = self.cache and use_cacheif cache:if self.cache_type == "ram":img = self.imgs[index]img = copy.deepcopy(img)elif self.cache_type == "disk":img = np.load(os.path.join(self.cache_dir, f"{self.path_filename[index].split('.')[0]}.npy"))else:raise ValueError(f"Unknown cache type: {self.cache_type}")else:img = read_img_fn(self, index)return imgreturn wrapperreturn decorator

至此就完成了缓存图片的操作。

这篇关于YOLOX源码之【数据缓存】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031869

相关文章

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal