本文主要是介绍hdu 5291 Candy Distribution(dp),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目链接:hdu 5291 Candy Distribution
每次先计算出dp[0],然后根据dp[0]的数值可以用o(1)的复杂度算出dp[1],以此类推。总体复杂度为o(200 * 80000),可以接受。
#include <cstdio>
#include <cstring>
#include <algorithm>using namespace std;
const int maxn = 80000;
const int maxm = 205;
const int mod = 1e9+7;
#define coe(x) ((x)/2+1)int N, M, A[maxm], dp[2][maxn + 5];int query(int x, int now) {if (x < 0 || x > 2*M)return 0;return dp[now][x];
}int solve () {int now = 0, pre = 1;memset(dp[now], 0, sizeof(dp[now]));dp[now][M] = 1;for (int i = 0; i < N; i++) {now = pre;pre = pre^1;int sumL = 0, sumR = 0, addL = 0, addR = 0;for (int k = -A[i]; k <= A[i]; k++) {int tmp = query(k, pre);dp[now][0] = 0;dp[now][0] = (dp[now][0] + 1LL * tmp * coe(A[i]-(k < 0 ? -k : k)) % mod) % mod;if (k <= 0) {sumL = (sumL + tmp) % mod;if ((k&1) == 0)addL = (addL + tmp) % mod;}if (k >= 0) {sumR = (sumR + tmp) % mod;if ((k&1) == 0)addR = (addR + tmp) % mod;}}if (A[i]&1) {addR = (sumR - addR + mod) % mod;addL = (sumL - addL + mod) % mod;}for (int k = 1; k <= M*2; k++) {sumR = (sumR + query(A[i] + k, pre)) % mod;addR = (sumR + mod - addR) % mod;sumR = (sumR + mod - query(k-1, pre)) % mod;dp[now][k] = ((dp[now][k-1] + addR - addL) % mod + mod) % mod;sumL = (sumL + query(k, pre)) % mod;addL = (sumL + mod - addL) % mod;sumL = (sumL + mod - query(k - A[i] - 1, pre)) % mod;}}return dp[now][M];
}int main () {int cas;scanf("%d", &cas);while (cas--) {scanf("%d", &N);M = 0;for (int i = 0; i < N; i++) {scanf("%d", &A[i]);M += A[i];}printf("%d\n", solve());}return 0;
}
这篇关于hdu 5291 Candy Distribution(dp)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!