本文主要是介绍hdu 4637 Rain on your Fat brother(几何+区间覆盖),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目连接:hdu 4637 Rain on your Fat brother
解题思路
题目等价于求线段与雨水的交,t为mazi停下来的时间,妹子移动相对于雨水的移动路线为 (x,0)−(x−V1∗t,V∗t) ,然后求出线段与每个雨水相交点,计算出进出时间,注意于圆相交的部分只能计算下半圆。
接着做一下区间覆盖,因为雨滴有重叠。
代码
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <complex>
#include <algorithm>using namespace std;
typedef pair<int,int> pii;
const double pi = 4 * atan(1);
const double eps = 1e-8;inline int dcmp (double x) { if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; }
inline double getDistance (double x, double y) { return sqrt(x * x + y * y); }
inline double torad(double deg) { return deg / 180 * pi; }struct Point {double x, y;Point (double x = 0, double y = 0): x(x), y(y) {}void read () { scanf("%lf%lf", &x, &y); }void write () { printf("%lf %lf", x, y); }bool operator == (const Point& u) const { return dcmp(x - u.x) == 0 && dcmp(y - u.y) == 0; }bool operator != (const Point& u) const { return !(*this == u); }bool operator < (const Point& u) const { return dcmp(x - u.x) < 0 || (dcmp(x-u.x)==0 && dcmp(y-u.y) < 0); }bool operator > (const Point& u) const { return u < *this; }bool operator <= (const Point& u) const { return *this < u || *this == u; }bool operator >= (const Point& u) const { return *this > u || *this == u; }Point operator + (const Point& u) { return Point(x + u.x, y + u.y); }Point operator - (const Point& u) { return Point(x - u.x, y - u.y); }Point operator * (const double u) { return Point(x * u, y * u); }Point operator / (const double u) { return Point(x / u, y / u); }double operator ^ (const Point& u) { return x*u.y - y*u.x; }
};
typedef Point Vector;struct Circle {Point o;double r;Circle () {}Circle (Point o, double r = 0): o(o), r(r) {}void read () { o.read(), scanf("%lf", &r); }Point point(double rad) { return Point(o.x + cos(rad)*r, o.y + sin(rad)*r); }double getArea (double rad) { return rad * r * r / 2; }
};/* 点积: 两向量长度的乘积再乘上它们夹角的余弦, 夹角大于90度时点积为负 */
double getDot (Vector a, Vector b) { return a.x * b.x + a.y * b.y; }
/* 叉积: 叉积等于两向量组成的三角形有向面积的两倍, cross(v, w) = -cross(w, v) */
double getCross (Vector a, Vector b) { return a.x * b.y - a.y * b.x; }double getLength (Vector a) { return sqrt(getDot(a, a)); }
double getAngle (Vector u) { return atan2(u.y, u.x); }
double getAngle (Vector a, Vector b) { return acos(getDot(a, b) / getLength(a) / getLength(b)); }/* 直线pv和直线qw的交点 */
bool getIntersection (Point p, Vector v, Point q, Vector w, Point& o) {if (dcmp(getCross(v, w)) == 0) return false;Vector u = p - q;double k = getCross(w, u) / getCross(v, w);o = p + v * k;return true;
}/* 判断线段是否存在交点 */
bool haveIntersection (Point a1, Point a2, Point b1, Point b2) {double c1=getCross(a2-a1, b1-a1), c2=getCross(a2-a1, b2-a1), c3=getCross(b2-b1, a1-b1), c4=getCross(b2-b1,a2-b1);return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0;
}/* 判断点是否在线段上 */
bool onSegment (Point p, Point a, Point b) { return dcmp(getCross(a-p, b-p)) == 0 && dcmp(getDot(a-p, b-p)) < 0; }/* 直线和原的交点 */
int getLineCircleIntersection (Point p, Point q, Circle O, vector<Point>& sol) {double t1, t2;Vector v = q - p;sol.clear();double a = v.x, b = p.x - O.o.x, c = v.y, d = p.y - O.o.y;double e = a*a+c*c, f = 2*(a*b+c*d), g = b*b+d*d-O.r*O.r;double delta = f*f - 4*e*g;if (dcmp(delta) < 0) return 0;if (dcmp(delta) == 0) {t1 = t2 = -f / (2 * e);sol.push_back(p + v * t1);return 1;}t1 = (-f - sqrt(delta)) / (2 * e); sol.push_back(p + v * t1);t2 = (-f + sqrt(delta)) / (2 * e); sol.push_back(p + v * t2);return 2;
}void getTriangleIntersection(Point s, Point e, Point a, Point b, Point c, vector<Point>& sol) {Point t;sol.clear();if (haveIntersection(s, e, a, b)) {getIntersection (s, e-s, a, b-a, t);sol.push_back(t);}if (haveIntersection(s, e, b, c)) {getIntersection (s, e-s, b, c-b, t);sol.push_back(t);}if (haveIntersection(s, e, c, a)) {getIntersection (s, e-s, c, a-c, t);sol.push_back(t);}
}//bool getIntersection (Point p, Vector v, Point q, Vector w, Point& o);
//int getLineCircleIntersection (Point p, Point q, Circle O, double& t1, double& t2, vector<Point>& sol) {struct State {double t;int k;State(double t = 0, int k = 0): t(t), k(k) {}bool operator < (const State& u) const {if (dcmp(t - u.t)) return t < u.t;return k > u.k;}
};double V1, V2, V, T, X;
vector<State> pos;double getTime(Point a, Vector v, Point b) { return (b.x - a.x) / v.x; }void init () {pos.clear();scanf("%lf%lf%lf%lf%lf", &V1, &V2, &V, &T, &X);double L = 0, R = V1 * T / (V2 - V1) + T;int n;double x, y, r, h;vector<Point> sol;vector<double> tim;Point B = Point(X, 0);Vector dir = Vector(-V1, V);Point E = B + dir * R;scanf("%d", &n);for (int i = 0; i < n; i++) {scanf("%lf%lf%lf%lf", &x, &y, &r, &h);tim.clear();getLineCircleIntersection(B, E, Circle(Point(x, y), r), sol);for (int i = 0; i < sol.size(); i++) {if (dcmp(sol[i].y - y) > 0) continue;tim.push_back(getTime(B, dir, sol[i]));}getTriangleIntersection(B, E, Point(x-r, y), Point(x+r, y), Point(x, y+h), sol);for (int i = 0; i < sol.size(); i++) {tim.push_back(getTime(B, dir, sol[i]));}sort(tim.begin(), tim.end());if (tim.size() <= 1) continue;double l = max(L, tim[0]), r = min(R, tim[tim.size()-1]);if (dcmp(l - r) > 0) continue;pos.push_back(State(l, 1));pos.push_back(State(r, -1));}
}double solve () {double ret = 0;sort(pos.begin(), pos.end());int n = pos.size(), k = 1;for (int i = 1; i < n; i++) {if (k > 0) ret += pos[i].t - pos[i-1].t;k += pos[i].k;}return ret;
}int main () {int cas;scanf("%d", &cas);for (int kcas = 1; kcas <= cas; kcas++) {init();printf("Case %d: %.4lf\n", kcas, solve());}return 0;
}
这篇关于hdu 4637 Rain on your Fat brother(几何+区间覆盖)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!