Python代码cProfile耗时分析及可视化

2024-06-04 18:18

本文主要是介绍Python代码cProfile耗时分析及可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python: cProfile 食用方法

import cProfile# 直接把分析结果打印到控制台
# loading为需要监测的函数,arg为其参数
cProfile.run("loading(arg)")
# 把分析结果保存到文件中
cProfile.run("loading(arg)", filename="result.out")
# 增加排序方式
cProfile.run("loading(arg)", filename="result.out", sort="cumulative")

输出类似:

         1767148 function calls (1751776 primitive calls) in 3.579 secondsOrdered by: standard namencalls  tottime  percall  cumtime  percall filename:lineno(function)2824    0.002    0.000    0.014    0.000 <__array_function__ internals>:2(all)7574    0.005    0.000    0.050    0.000 <__array_function__ internals>:2(any)2    0.000    0.000    0.000    0.000 <__array_function__ internals>:2(argsort)2    0.000    0.000    0.000    0.000 <__array_function__ internals>:2(copyto)20    0.000    0.000    0.000    0.000 <__array_function__ internals>:2(count_nonzero)47    0.000    0.000    0.000    0.000 <__array_function__ internals>:2(cumsum)1441    0.001    0.000    0.009    0.000 <__array_function__ internals>:2(prod)47    0.000    0.000    0.001    0.000 <__array_function__ internals>:2(unique)1    0.000    0.000    0.000    0.000 <string>:1(<module>)1908    0.007    0.000    0.007    0.000 BOX_adjacent.py:10(__init__)7750    0.061    0.000    0.164    0.000 BOX_adjacent.py:184(Best_Blok_adj)7750    0.002    0.000    0.002    0.000 BOX_adjacent.py:277(<listcomp>)27042    0.063    0.000    0.426    0.000 BOX_adjacent.py:29(Can_Load_adj)318    0.000    0.000    0.000    0.000 BOX_adjacent.py:291(reset)95394    0.007    0.000    0.007    0.000 BOX_adjacent.py:51(<lambda>)16944    0.001    0.000    0.001    0.000 BOX_adjacent.py:55(<lambda>)34047    0.080    0.000    0.237    0.000 BOX_adjacent.py:81(Possible_Oriatation_adj)76384/61012    0.080    0.000    0.178    0.000 copy.py:128(deepcopy)15372    0.001    0.000    0.001    0.000 copy.py:182(_deepcopy_atomic)...

其中

共有1767148次函数调用,原始调用为1751776次,原始调用说明不包含递归调用。
以standard name进行排序。76384/61012表示发生了递归调用,61012为原始调用次数,76384为递归调用次数
ncalls 函数的被调用次数
tottime 函数总计运行时间,除去函数中调用的函数运行时间
percall 函数运行一次的平均时间,等于tottime/ncalls
cumtime 函数总计运行时间,含调用的函数运行时间
percall 函数运行一次的平均时间,等于cumtime/ncalls
filename:lineno(function) 函数所在的文件名,函数的行号,函数名

可视化工具 graphviz,gprof2dot

pip install graphviz
pip install gprof2dotgprof2dot -f pstats result.out | dot -Tpng -o result.png

结果如下:
请添加图片描述
可以看到check_space_contain被调用了太多次,check代码发现用很多重复的调用,所以简单改一下,只调用一次进行赋值,之后直接拿来用,结果累计调用次数直接降低了30%,节省大量时间,类似可改进的地方还有很多。另外在清楚任务执行与调用关系的情况下,可以做多进程增加运行效率。

这篇关于Python代码cProfile耗时分析及可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030754

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者