Apache Doris 基础 -- 数据表设计(使用AUTO_INCREMENT)

2024-06-04 18:12

本文主要是介绍Apache Doris 基础 -- 数据表设计(使用AUTO_INCREMENT),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导入数据时,Doris将表唯一值分配给自动递增列中没有指定值的行。

1、功能

对于包含自动递增列的表,在数据导入期间:

  • 如果目标列不包括自动递增列,Doris将用生成的值填充自动递增列。
  • 如果目标列包括自动递增列,则为该列导入的数据中的空值将被Doris生成的值替换,而非空值将保持不变。注意,非空值可能会破坏自动增量列值的唯一性。

1.1 唯一性

Doris确保在自动递增列上生成的值具有表范围内的唯一性。但是,需要注意的是,自动递增列的唯一性只保证由Doris自动填充的值的唯一性,而不考虑用户提供的值。如果用户通过指定自动递增列显式地为该表插入用户提供的值,则无法保证这种唯一性。

1.2 聚集性

Doris确保自动递增列上生成的值是密集的,但它不能保证导入期间自动递增列中自动生成的值是完全连续的。因此,在导入期间,自动增量列生成的值可能会出现一些跳跃。这是因为出于性能考虑,每个BE都会缓存一部分预分配的自动增量列值,并且这些缓存的值在不同的BE之间不会相交。此外,由于这种缓存机制,Doris不能保证以后在物理时间轴上导入的自动增量列上自动生成的值比以前导入的值大。因此,自动递增列分配的值不能用于确定导入的时间顺序。

2、语法

要使用自动递增列,需要在表创建期间(CREATE-TABLE)将AUTO_INCREMENT属性添加到相应的列。要手动指定自动递增列的起始值,可以在创建表时使用AUTO_INCREMENT(start_value)语句。如果不指定,则默认起始值为1

2.1 Examples

  1. 创建一个 Duplicate 表,其中一个键列作为自动递增列:
CREATE TABLE `demo`.`tbl` (`id` BIGINT NOT NULL AUTO_INCREMENT,`value` BIGINT NOT NULL
) ENGINE=OLAP
DUPLICATE KEY(`id`)
DISTRIBUTED BY HASH(`id`) BUCKETS 10
PROPERTIES (
"replication_allocation" = "tag.location.default: 3"
);
  1. 创建一个 Duplicate 表,其中一个键列作为自动递增列,并设置起始值为100:
CREATE TABLE `demo`.`tbl` (`id` BIGINT NOT NULL AUTO_INCREMENT(100),`value` BIGINT NOT NULL
) ENGINE=OLAP
DUPLICATE KEY(`id`)
DISTRIBUTED BY HASH(`id`) BUCKETS 10
PROPERTIES (
"replication_allocation" = "tag.location.default: 3"
);

3.创建一个 Duplicate 表,其中一个值列作为自动递增列:

CREATE TABLE `demo`.`tbl` (`uid` BIGINT NOT NULL,`name` BIGINT NOT NULL,`id` BIGINT NOT NULL AUTO_INCREMENT,`value` BIGINT NOT NULL
) ENGINE=OLAP
DUPLICATE KEY(`uid`, `name`)
DISTRIBUTED BY HASH(`uid`) BUCKETS 10
PROPERTIES (
"replication_allocation" = "tag.location.default: 3"
);
  1. 创建一个Unique 表,其中一个键列作为自增列:
CREATE TABLE `demo`.`tbl` (`id` BIGINT NOT NULL AUTO_INCREMENT,`name` varchar(65533) NOT NULL,`value` int(11) NOT NULL
) ENGINE=OLAP
UNIQUE KEY(`id`)
DISTRIBUTED BY HASH(`id`) BUCKETS 10
PROPERTIES (
"replication_allocation" = "tag.location.default: 3",
"enable_unique_key_merge_on_write" = "true"
);
  1. 创建一个Unique表,其中一个值列作为自动增量列:
CREATE TABLE `demo`.`tbl` (`text` varchar(65533) NOT NULL,`id` BIGINT NOT NULL AUTO_INCREMENT,
) ENGINE=OLAP
UNIQUE KEY(`text`)
DISTRIBUTED BY HASH(`text`) BUCKETS 10
PROPERTIES (
"replication_allocation" = "tag.location.default: 3",
"enable_unique_key_merge_on_write" = "true"
);

2.2 制约和限制

  • 只有Duplicate 模型表和Unique 模型表可以包含自动递增列。
  • 一个表最多只能包含一个自动递增列。
  • 自动递增列的类型必须为BIGINT并且必须为NOT NULL
  • 手动指定的自动递增列的起始值必须大于或等于0。

3、用法

3.1 导入

考虑以下表:

CREATE TABLE `demo`.`tbl` (`id` BIGINT NOT NULL AUTO_INCREMENT,`name` varchar(65533) NOT NULL,`value` int(11) NOT NULL
) ENGINE=OLAP
UNIQUE KEY(`id`)
DISTRIBUTED BY HASH(`id`) BUCKETS 10
PROPERTIES (
"replication_allocation" = "tag.location.default: 3",
"enable_unique_key_merge_on_write" = "true"
);

当使用insert into语句导入数据而没有指定自动递增的列id时,id列将自动被生成的值填充。

mysql> insert into tbl(name, value) values("Bob", 10), ("Alice", 20), ("Jack", 30);
Query OK, 3 rows affected (0.09 sec)
{'label':'label_183babcb84ad4023_a2d6266ab73fb5aa', 'status':'VISIBLE', 'txnId':'7'}mysql> select * from tbl order by id;
+------+-------+-------+
| id   | name  | value |
+------+-------+-------+
|    1 | Bob   |    10 |
|    2 | Alice |    20 |
|    3 | Jack  |    30 |
+------+-------+-------+
3 rows in set (0.05 sec)

类似地,使用流加载导入文件test.csv而不指定自动递增列id将导致id列被自动填充生成的值。

Tom, 40
John, 50
curl --location-trusted -u user:passwd -H "columns:name,value" -H "column_separator:," -T ./test1.csv http://{host}:{port}/api/{db}/tbl/_stream_load
mysql> select * from tbl order by id;
+------+-------+-------+
| id   | name  | value |
+------+-------+-------+
|    1 | Bob   |    10 |
|    2 | Alice |    20 |
|    3 | Jack  |    30 |
|    4 | Tom   |    40 |
|    5 | John  |    50 |
+------+-------+-------+
5 rows in set (0.04 sec)

在指定自动递增列id的同时使用insert into语句导入时,为该列导入的数据中的空值将被生成的值替换。

mysql> insert into tbl(id, name, value) values(null, "Doris", 60), (null, "Nereids", 70);
Query OK, 2 rows affected (0.07 sec)
{'label':'label_9cb0c01db1a0402c_a2b8b44c11ce4703', 'status':'VISIBLE', 'txnId':'10'}mysql> select * from tbl order by id;
+------+---------+-------+
| id   | name    | value |
+------+---------+-------+
|    1 | Bob     |    10 |
|    2 | Alice   |    20 |
|    3 | Jack    |    30 |
|    4 | Tom     |    40 |
|    5 | John    |    50 |
|    6 | Doris   |    60 |
|    7 | Nereids |    70 |
+------+---------+-------+
7 rows in set (0.04 sec)

3.2 部分更新

当对包含自动递增列的merge-on-write Unique表执行部分更新时:

如果自动递增列是键列,则在部分更新期间,由于用户必须显式指定键列,因此部分列更新的目标列必须包括自动递增列。在这个场景中,导入行为类似于常规的部分更新。

mysql> CREATE TABLE `demo`.`tbl2` (->     `id` BIGINT NOT NULL AUTO_INCREMENT,->     `name` varchar(65533) NOT NULL,->     `value` int(11) NOT NULL DEFAULT "0"-> ) ENGINE=OLAP-> UNIQUE KEY(`id`)-> DISTRIBUTED BY HASH(`id`) BUCKETS 10-> PROPERTIES (-> "replication_allocation" = "tag.location.default: 3",-> "enable_unique_key_merge_on_write" = "true"-> );
Query OK, 0 rows affected (0.03 sec)mysql> insert into tbl2(id, name, value) values(1, "Bob", 10), (2, "Alice", 20), (3, "Jack", 30);
Query OK, 3 rows affected (0.14 sec)
{'label':'label_5538549c866240b6_bce75ef323ac22a0', 'status':'VISIBLE', 'txnId':'1004'}mysql> select * from tbl2 order by id;
+------+-------+-------+
| id   | name  | value |
+------+-------+-------+
|    1 | Bob   |    10 |
|    2 | Alice |    20 |
|    3 | Jack  |    30 |
+------+-------+-------+
3 rows in set (0.08 sec)mysql> set enable_unique_key_partial_update=true;
Query OK, 0 rows affected (0.01 sec)mysql> set enable_insert_strict=false;
Query OK, 0 rows affected (0.00 sec)mysql> insert into tbl2(id, name) values(1, "modified"), (4, "added");
Query OK, 2 rows affected (0.06 sec)
{'label':'label_3e68324cfd87457d_a6166cc0a878cfdc', 'status':'VISIBLE', 'txnId':'1005'}mysql> select * from tbl2 order by id;
+------+----------+-------+
| id   | name     | value |
+------+----------+-------+
|    1 | modified |    10 |
|    2 | Alice    |    20 |
|    3 | Jack     |    30 |
|    4 | added    |     0 |
+------+----------+-------+
4 rows in set (0.04 sec)

当自动递增列是非键列,并且用户没有为自动递增列指定值时,将从表中的现有数据行填充该值。如果用户指定自动递增列,则该列的导入数据中的空值将被生成的值替换,而非空值将保持不变,然后这些数据将加载部分更新的语义。

mysql> CREATE TABLE `demo`.`tbl3` (->     `id` BIGINT NOT NULL,->     `name` varchar(100) NOT NULL,->     `score` BIGINT NOT NULL,->     `aid` BIGINT NOT NULL AUTO_INCREMENT-> ) ENGINE=OLAP-> UNIQUE KEY(`id`)-> DISTRIBUTED BY HASH(`id`) BUCKETS 1-> PROPERTIES (-> "replication_allocation" = "tag.location.default: 3",-> "enable_unique_key_merge_on_write" = "true"-> );
Query OK, 0 rows affected (0.16 sec)mysql> insert into tbl3(id, name, score) values(1, "Doris", 100), (2, "Nereids", 200), (3, "Bob", 300);
Query OK, 3 rows affected (0.28 sec)
{'label':'label_c52b2c246e244dda_9b91ee5e27a31f9b', 'status':'VISIBLE', 'txnId':'2003'}mysql> select * from tbl3 order by id;
+------+---------+-------+------+
| id   | name    | score | aid  |
+------+---------+-------+------+
|    1 | Doris   |   100 |    0 |
|    2 | Nereids |   200 |    1 |
|    3 | Bob     |   300 |    2 |
+------+---------+-------+------+
3 rows in set (0.13 sec)mysql> set enable_unique_key_partial_update=true;
Query OK, 0 rows affected (0.00 sec)mysql> set enable_insert_strict=false;
Query OK, 0 rows affected (0.00 sec)mysql> insert into tbl3(id, score) values(1, 999), (2, 888);
Query OK, 2 rows affected (0.07 sec)
{'label':'label_dfec927d7a4343ca_9f9ade581391de97', 'status':'VISIBLE', 'txnId':'2004'}mysql> select * from tbl3 order by id;
+------+---------+-------+------+
| id   | name    | score | aid  |
+------+---------+-------+------+
|    1 | Doris   |   999 |    0 |
|    2 | Nereids |   888 |    1 |
|    3 | Bob     |   300 |    2 |
+------+---------+-------+------+
3 rows in set (0.06 sec)mysql> insert into tbl3(id, aid) values(1, 1000), (3, 500);
Query OK, 2 rows affected (0.07 sec)
{'label':'label_b26012959f714f60_abe23c87a06aa0bf', 'status':'VISIBLE', 'txnId':'2005'}mysql> select * from tbl3 order by id;
+------+---------+-------+------+
| id   | name    | score | aid  |
+------+---------+-------+------+
|    1 | Doris   |   999 | 1000 |
|    2 | Nereids |   888 |    1 |
|    3 | Bob     |   300 |  500 |
+------+---------+-------+------+
3 rows in set (0.06 sec)

4、使用场景

4.1 字典编码

在用户配置文件中使用位图进行受众分析需要构建一个用户字典,其中每个用户对应一个唯一的整数字典值。聚合这些字典值可以提高位图的性能。

以线下UV、PV分析场景为例,假设有详细的用户行为表:

CREATE TABLE `demo`.`dwd_dup_tbl` (`user_id` varchar(50) NOT NULL,`dim1` varchar(50) NOT NULL,`dim2` varchar(50) NOT NULL,`dim3` varchar(50) NOT NULL,`dim4` varchar(50) NOT NULL,`dim5` varchar(50) NOT NULL,`visit_time` DATE NOT NULL
) ENGINE=OLAP
DUPLICATE KEY(`user_id`)
DISTRIBUTED BY HASH(`user_id`) BUCKETS 32
PROPERTIES (
"replication_allocation" = "tag.location.default: 3"
);

使用auto-increment列创建如下字典表:

CREATE TABLE `demo`.`dictionary_tbl` (`user_id` varchar(50) NOT NULL,`aid` BIGINT NOT NULL AUTO_INCREMENT
) ENGINE=OLAP
UNIQUE KEY(`user_id`)
DISTRIBUTED BY HASH(`user_id`) BUCKETS 32
PROPERTIES (
"replication_allocation" = "tag.location.default: 3",
"enable_unique_key_merge_on_write" = "true"
);

从已有数据中导入user_id的值到字典表中,建立user_id到整数值的映射:

insert into dictionary_tbl(user_id)
select user_id from dwd_dup_tbl group by user_id;

或者只将增量数据中的user_id的值导入字典表:

insert into dictionary_tbl(user_id)
select dwd_dup_tbl.user_id from dwd_dup_tbl left join dictionary_tbl
on dwd_dup_tbl.user_id = dictionary_tbl.user_id where dwd_dup_tbl.visit_time > '2023-12-10' and dictionary_tbl.user_id is NULL;

在实际场景中,Flink连接器也可用于将数据写入Doris

假设dim1dim3dim5表示我们感兴趣的统计维度,创建以下表来存储聚合结果:

CREATE TABLE `demo`.`dws_agg_tbl` (`dim1` varchar(50) NOT NULL,`dim3` varchar(50) NOT NULL,`dim5` varchar(50) NOT NULL,`user_id_bitmap` BITMAP BITMAP_UNION NOT NULL,`pv` BIGINT SUM NOT NULL 
) ENGINE=OLAP
AGGREGATE KEY(`dim1`,`dim3`,`dim5`)
DISTRIBUTED BY HASH(`user_id`) BUCKETS 32
PROPERTIES (
"replication_allocation" = "tag.location.default: 3"
);

将数据聚合操作的结果存储到聚合结果表中:

insert into dws_agg_tbl
select dwd_dup_tbl.dim1, dwd_dup_tbl.dim3, dwd_dup_tbl.dim5, BITMAP_UNION(TO_BITMAP(dictionary_tbl.aid)), COUNT(1)
from dwd_dup_tbl INNER JOIN dictionary_tbl on dwd_dup_tbl.user_id = dictionary_tbl.user_id;

使用以下语句执行UV和PV查询:

select dim1, dim3, dim5, user_id_bitmap as uv, pv from dws_agg_tbl;

高效分页

在页面上显示数据时,通常需要分页。传统的分页通常涉及在SQL查询中使用limitoffsetorder by。例如,考虑下面要显示的业务表:

CREATE TABLE `demo`.`records_tbl` (`key` int(11) NOT NULL COMMENT "",`name` varchar(26) NOT NULL COMMENT "",`address` varchar(41) NOT NULL COMMENT "",`city` varchar(11) NOT NULL COMMENT "",`nation` varchar(16) NOT NULL COMMENT "",`region` varchar(13) NOT NULL COMMENT "",`phone` varchar(16) NOT NULL COMMENT "",`mktsegment` varchar(11) NOT NULL COMMENT ""
) DUPLICATE KEY (`key`, `name`)
DISTRIBUTED BY HASH(`key`) BUCKETS 10
PROPERTIES (
"replication_allocation" = "tag.location.default: 3"
);

假设分页中每页显示100条记录。要获取第一页的数据,可以使用以下SQL查询:

select * from records_tbl order by `key`, `name` limit 100;

获取第二页的数据可以通过以下方式完成:

select * from records_tbl order by `key`, `name` limit 100, offset 100;

但是,在执行深度分页查询(具有较大偏移量)时,即使实际所需的数据行很少,该方法仍然会将所有数据读入内存中进行完整排序,然后再进行后续处理,这是非常低效的。使用自动递增列会为每行分配一个唯一值,从而允许使用where unique_value > x limit y预先过滤大量数据,从而提高分页效率

继续前面提到的业务表,向表中添加一个自动递增列,为每一行提供唯一标识符:

CREATE TABLE `demo`.`records_tbl2` (`key` int(11) NOT NULL COMMENT "",`name` varchar(26) NOT NULL COMMENT "",`address` varchar(41) NOT NULL COMMENT "",`city` varchar(11) NOT NULL COMMENT "",`nation` varchar(16) NOT NULL COMMENT "",`region` varchar(13) NOT NULL COMMENT "",`phone` varchar(16) NOT NULL COMMENT "",`mktsegment` varchar(11) NOT NULL COMMENT "",`unique_value` BIGINT NOT NULL AUTO_INCREMENT
) DUPLICATE KEY (`key`, `name`)
DISTRIBUTED BY HASH(`key`) BUCKETS 10
PROPERTIES ("replication_num" = "3"
);

对于每页显示100条记录的分页,要获取第一页的数据,可以使用以下SQL查询:

select * from records_tbl2 order by unique_value limit 100;

通过记录返回结果中的unique_value的最大值,我们假设它是99。下面的查询可以获取第二页的数据:

select * from records_tbl2 where unique_value > 99 order by unique_value limit 100;

如果直接查询后一页的内容,不方便直接从前一页的数据中获取unique_value的最大值(例如直接获取第101页的内容),可以使用以下查询:

select key, name, address, city, nation, region, phone, mktsegment
from records_tbl2, (select unique_value as max_value from records_tbl2 order by unique_value limit 1 offset 9999) as previous_data
where records_tbl2.unique_value > previous_data.max_value
order by records_tbl2.unique_value limit 100;

这篇关于Apache Doris 基础 -- 数据表设计(使用AUTO_INCREMENT)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030743

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意