Apache Doris 基础 -- 数据表设计(使用AUTO_INCREMENT)

2024-06-04 18:12

本文主要是介绍Apache Doris 基础 -- 数据表设计(使用AUTO_INCREMENT),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导入数据时,Doris将表唯一值分配给自动递增列中没有指定值的行。

1、功能

对于包含自动递增列的表,在数据导入期间:

  • 如果目标列不包括自动递增列,Doris将用生成的值填充自动递增列。
  • 如果目标列包括自动递增列,则为该列导入的数据中的空值将被Doris生成的值替换,而非空值将保持不变。注意,非空值可能会破坏自动增量列值的唯一性。

1.1 唯一性

Doris确保在自动递增列上生成的值具有表范围内的唯一性。但是,需要注意的是,自动递增列的唯一性只保证由Doris自动填充的值的唯一性,而不考虑用户提供的值。如果用户通过指定自动递增列显式地为该表插入用户提供的值,则无法保证这种唯一性。

1.2 聚集性

Doris确保自动递增列上生成的值是密集的,但它不能保证导入期间自动递增列中自动生成的值是完全连续的。因此,在导入期间,自动增量列生成的值可能会出现一些跳跃。这是因为出于性能考虑,每个BE都会缓存一部分预分配的自动增量列值,并且这些缓存的值在不同的BE之间不会相交。此外,由于这种缓存机制,Doris不能保证以后在物理时间轴上导入的自动增量列上自动生成的值比以前导入的值大。因此,自动递增列分配的值不能用于确定导入的时间顺序。

2、语法

要使用自动递增列,需要在表创建期间(CREATE-TABLE)将AUTO_INCREMENT属性添加到相应的列。要手动指定自动递增列的起始值,可以在创建表时使用AUTO_INCREMENT(start_value)语句。如果不指定,则默认起始值为1

2.1 Examples

  1. 创建一个 Duplicate 表,其中一个键列作为自动递增列:
CREATE TABLE `demo`.`tbl` (`id` BIGINT NOT NULL AUTO_INCREMENT,`value` BIGINT NOT NULL
) ENGINE=OLAP
DUPLICATE KEY(`id`)
DISTRIBUTED BY HASH(`id`) BUCKETS 10
PROPERTIES (
"replication_allocation" = "tag.location.default: 3"
);
  1. 创建一个 Duplicate 表,其中一个键列作为自动递增列,并设置起始值为100:
CREATE TABLE `demo`.`tbl` (`id` BIGINT NOT NULL AUTO_INCREMENT(100),`value` BIGINT NOT NULL
) ENGINE=OLAP
DUPLICATE KEY(`id`)
DISTRIBUTED BY HASH(`id`) BUCKETS 10
PROPERTIES (
"replication_allocation" = "tag.location.default: 3"
);

3.创建一个 Duplicate 表,其中一个值列作为自动递增列:

CREATE TABLE `demo`.`tbl` (`uid` BIGINT NOT NULL,`name` BIGINT NOT NULL,`id` BIGINT NOT NULL AUTO_INCREMENT,`value` BIGINT NOT NULL
) ENGINE=OLAP
DUPLICATE KEY(`uid`, `name`)
DISTRIBUTED BY HASH(`uid`) BUCKETS 10
PROPERTIES (
"replication_allocation" = "tag.location.default: 3"
);
  1. 创建一个Unique 表,其中一个键列作为自增列:
CREATE TABLE `demo`.`tbl` (`id` BIGINT NOT NULL AUTO_INCREMENT,`name` varchar(65533) NOT NULL,`value` int(11) NOT NULL
) ENGINE=OLAP
UNIQUE KEY(`id`)
DISTRIBUTED BY HASH(`id`) BUCKETS 10
PROPERTIES (
"replication_allocation" = "tag.location.default: 3",
"enable_unique_key_merge_on_write" = "true"
);
  1. 创建一个Unique表,其中一个值列作为自动增量列:
CREATE TABLE `demo`.`tbl` (`text` varchar(65533) NOT NULL,`id` BIGINT NOT NULL AUTO_INCREMENT,
) ENGINE=OLAP
UNIQUE KEY(`text`)
DISTRIBUTED BY HASH(`text`) BUCKETS 10
PROPERTIES (
"replication_allocation" = "tag.location.default: 3",
"enable_unique_key_merge_on_write" = "true"
);

2.2 制约和限制

  • 只有Duplicate 模型表和Unique 模型表可以包含自动递增列。
  • 一个表最多只能包含一个自动递增列。
  • 自动递增列的类型必须为BIGINT并且必须为NOT NULL
  • 手动指定的自动递增列的起始值必须大于或等于0。

3、用法

3.1 导入

考虑以下表:

CREATE TABLE `demo`.`tbl` (`id` BIGINT NOT NULL AUTO_INCREMENT,`name` varchar(65533) NOT NULL,`value` int(11) NOT NULL
) ENGINE=OLAP
UNIQUE KEY(`id`)
DISTRIBUTED BY HASH(`id`) BUCKETS 10
PROPERTIES (
"replication_allocation" = "tag.location.default: 3",
"enable_unique_key_merge_on_write" = "true"
);

当使用insert into语句导入数据而没有指定自动递增的列id时,id列将自动被生成的值填充。

mysql> insert into tbl(name, value) values("Bob", 10), ("Alice", 20), ("Jack", 30);
Query OK, 3 rows affected (0.09 sec)
{'label':'label_183babcb84ad4023_a2d6266ab73fb5aa', 'status':'VISIBLE', 'txnId':'7'}mysql> select * from tbl order by id;
+------+-------+-------+
| id   | name  | value |
+------+-------+-------+
|    1 | Bob   |    10 |
|    2 | Alice |    20 |
|    3 | Jack  |    30 |
+------+-------+-------+
3 rows in set (0.05 sec)

类似地,使用流加载导入文件test.csv而不指定自动递增列id将导致id列被自动填充生成的值。

Tom, 40
John, 50
curl --location-trusted -u user:passwd -H "columns:name,value" -H "column_separator:," -T ./test1.csv http://{host}:{port}/api/{db}/tbl/_stream_load
mysql> select * from tbl order by id;
+------+-------+-------+
| id   | name  | value |
+------+-------+-------+
|    1 | Bob   |    10 |
|    2 | Alice |    20 |
|    3 | Jack  |    30 |
|    4 | Tom   |    40 |
|    5 | John  |    50 |
+------+-------+-------+
5 rows in set (0.04 sec)

在指定自动递增列id的同时使用insert into语句导入时,为该列导入的数据中的空值将被生成的值替换。

mysql> insert into tbl(id, name, value) values(null, "Doris", 60), (null, "Nereids", 70);
Query OK, 2 rows affected (0.07 sec)
{'label':'label_9cb0c01db1a0402c_a2b8b44c11ce4703', 'status':'VISIBLE', 'txnId':'10'}mysql> select * from tbl order by id;
+------+---------+-------+
| id   | name    | value |
+------+---------+-------+
|    1 | Bob     |    10 |
|    2 | Alice   |    20 |
|    3 | Jack    |    30 |
|    4 | Tom     |    40 |
|    5 | John    |    50 |
|    6 | Doris   |    60 |
|    7 | Nereids |    70 |
+------+---------+-------+
7 rows in set (0.04 sec)

3.2 部分更新

当对包含自动递增列的merge-on-write Unique表执行部分更新时:

如果自动递增列是键列,则在部分更新期间,由于用户必须显式指定键列,因此部分列更新的目标列必须包括自动递增列。在这个场景中,导入行为类似于常规的部分更新。

mysql> CREATE TABLE `demo`.`tbl2` (->     `id` BIGINT NOT NULL AUTO_INCREMENT,->     `name` varchar(65533) NOT NULL,->     `value` int(11) NOT NULL DEFAULT "0"-> ) ENGINE=OLAP-> UNIQUE KEY(`id`)-> DISTRIBUTED BY HASH(`id`) BUCKETS 10-> PROPERTIES (-> "replication_allocation" = "tag.location.default: 3",-> "enable_unique_key_merge_on_write" = "true"-> );
Query OK, 0 rows affected (0.03 sec)mysql> insert into tbl2(id, name, value) values(1, "Bob", 10), (2, "Alice", 20), (3, "Jack", 30);
Query OK, 3 rows affected (0.14 sec)
{'label':'label_5538549c866240b6_bce75ef323ac22a0', 'status':'VISIBLE', 'txnId':'1004'}mysql> select * from tbl2 order by id;
+------+-------+-------+
| id   | name  | value |
+------+-------+-------+
|    1 | Bob   |    10 |
|    2 | Alice |    20 |
|    3 | Jack  |    30 |
+------+-------+-------+
3 rows in set (0.08 sec)mysql> set enable_unique_key_partial_update=true;
Query OK, 0 rows affected (0.01 sec)mysql> set enable_insert_strict=false;
Query OK, 0 rows affected (0.00 sec)mysql> insert into tbl2(id, name) values(1, "modified"), (4, "added");
Query OK, 2 rows affected (0.06 sec)
{'label':'label_3e68324cfd87457d_a6166cc0a878cfdc', 'status':'VISIBLE', 'txnId':'1005'}mysql> select * from tbl2 order by id;
+------+----------+-------+
| id   | name     | value |
+------+----------+-------+
|    1 | modified |    10 |
|    2 | Alice    |    20 |
|    3 | Jack     |    30 |
|    4 | added    |     0 |
+------+----------+-------+
4 rows in set (0.04 sec)

当自动递增列是非键列,并且用户没有为自动递增列指定值时,将从表中的现有数据行填充该值。如果用户指定自动递增列,则该列的导入数据中的空值将被生成的值替换,而非空值将保持不变,然后这些数据将加载部分更新的语义。

mysql> CREATE TABLE `demo`.`tbl3` (->     `id` BIGINT NOT NULL,->     `name` varchar(100) NOT NULL,->     `score` BIGINT NOT NULL,->     `aid` BIGINT NOT NULL AUTO_INCREMENT-> ) ENGINE=OLAP-> UNIQUE KEY(`id`)-> DISTRIBUTED BY HASH(`id`) BUCKETS 1-> PROPERTIES (-> "replication_allocation" = "tag.location.default: 3",-> "enable_unique_key_merge_on_write" = "true"-> );
Query OK, 0 rows affected (0.16 sec)mysql> insert into tbl3(id, name, score) values(1, "Doris", 100), (2, "Nereids", 200), (3, "Bob", 300);
Query OK, 3 rows affected (0.28 sec)
{'label':'label_c52b2c246e244dda_9b91ee5e27a31f9b', 'status':'VISIBLE', 'txnId':'2003'}mysql> select * from tbl3 order by id;
+------+---------+-------+------+
| id   | name    | score | aid  |
+------+---------+-------+------+
|    1 | Doris   |   100 |    0 |
|    2 | Nereids |   200 |    1 |
|    3 | Bob     |   300 |    2 |
+------+---------+-------+------+
3 rows in set (0.13 sec)mysql> set enable_unique_key_partial_update=true;
Query OK, 0 rows affected (0.00 sec)mysql> set enable_insert_strict=false;
Query OK, 0 rows affected (0.00 sec)mysql> insert into tbl3(id, score) values(1, 999), (2, 888);
Query OK, 2 rows affected (0.07 sec)
{'label':'label_dfec927d7a4343ca_9f9ade581391de97', 'status':'VISIBLE', 'txnId':'2004'}mysql> select * from tbl3 order by id;
+------+---------+-------+------+
| id   | name    | score | aid  |
+------+---------+-------+------+
|    1 | Doris   |   999 |    0 |
|    2 | Nereids |   888 |    1 |
|    3 | Bob     |   300 |    2 |
+------+---------+-------+------+
3 rows in set (0.06 sec)mysql> insert into tbl3(id, aid) values(1, 1000), (3, 500);
Query OK, 2 rows affected (0.07 sec)
{'label':'label_b26012959f714f60_abe23c87a06aa0bf', 'status':'VISIBLE', 'txnId':'2005'}mysql> select * from tbl3 order by id;
+------+---------+-------+------+
| id   | name    | score | aid  |
+------+---------+-------+------+
|    1 | Doris   |   999 | 1000 |
|    2 | Nereids |   888 |    1 |
|    3 | Bob     |   300 |  500 |
+------+---------+-------+------+
3 rows in set (0.06 sec)

4、使用场景

4.1 字典编码

在用户配置文件中使用位图进行受众分析需要构建一个用户字典,其中每个用户对应一个唯一的整数字典值。聚合这些字典值可以提高位图的性能。

以线下UV、PV分析场景为例,假设有详细的用户行为表:

CREATE TABLE `demo`.`dwd_dup_tbl` (`user_id` varchar(50) NOT NULL,`dim1` varchar(50) NOT NULL,`dim2` varchar(50) NOT NULL,`dim3` varchar(50) NOT NULL,`dim4` varchar(50) NOT NULL,`dim5` varchar(50) NOT NULL,`visit_time` DATE NOT NULL
) ENGINE=OLAP
DUPLICATE KEY(`user_id`)
DISTRIBUTED BY HASH(`user_id`) BUCKETS 32
PROPERTIES (
"replication_allocation" = "tag.location.default: 3"
);

使用auto-increment列创建如下字典表:

CREATE TABLE `demo`.`dictionary_tbl` (`user_id` varchar(50) NOT NULL,`aid` BIGINT NOT NULL AUTO_INCREMENT
) ENGINE=OLAP
UNIQUE KEY(`user_id`)
DISTRIBUTED BY HASH(`user_id`) BUCKETS 32
PROPERTIES (
"replication_allocation" = "tag.location.default: 3",
"enable_unique_key_merge_on_write" = "true"
);

从已有数据中导入user_id的值到字典表中,建立user_id到整数值的映射:

insert into dictionary_tbl(user_id)
select user_id from dwd_dup_tbl group by user_id;

或者只将增量数据中的user_id的值导入字典表:

insert into dictionary_tbl(user_id)
select dwd_dup_tbl.user_id from dwd_dup_tbl left join dictionary_tbl
on dwd_dup_tbl.user_id = dictionary_tbl.user_id where dwd_dup_tbl.visit_time > '2023-12-10' and dictionary_tbl.user_id is NULL;

在实际场景中,Flink连接器也可用于将数据写入Doris

假设dim1dim3dim5表示我们感兴趣的统计维度,创建以下表来存储聚合结果:

CREATE TABLE `demo`.`dws_agg_tbl` (`dim1` varchar(50) NOT NULL,`dim3` varchar(50) NOT NULL,`dim5` varchar(50) NOT NULL,`user_id_bitmap` BITMAP BITMAP_UNION NOT NULL,`pv` BIGINT SUM NOT NULL 
) ENGINE=OLAP
AGGREGATE KEY(`dim1`,`dim3`,`dim5`)
DISTRIBUTED BY HASH(`user_id`) BUCKETS 32
PROPERTIES (
"replication_allocation" = "tag.location.default: 3"
);

将数据聚合操作的结果存储到聚合结果表中:

insert into dws_agg_tbl
select dwd_dup_tbl.dim1, dwd_dup_tbl.dim3, dwd_dup_tbl.dim5, BITMAP_UNION(TO_BITMAP(dictionary_tbl.aid)), COUNT(1)
from dwd_dup_tbl INNER JOIN dictionary_tbl on dwd_dup_tbl.user_id = dictionary_tbl.user_id;

使用以下语句执行UV和PV查询:

select dim1, dim3, dim5, user_id_bitmap as uv, pv from dws_agg_tbl;

高效分页

在页面上显示数据时,通常需要分页。传统的分页通常涉及在SQL查询中使用limitoffsetorder by。例如,考虑下面要显示的业务表:

CREATE TABLE `demo`.`records_tbl` (`key` int(11) NOT NULL COMMENT "",`name` varchar(26) NOT NULL COMMENT "",`address` varchar(41) NOT NULL COMMENT "",`city` varchar(11) NOT NULL COMMENT "",`nation` varchar(16) NOT NULL COMMENT "",`region` varchar(13) NOT NULL COMMENT "",`phone` varchar(16) NOT NULL COMMENT "",`mktsegment` varchar(11) NOT NULL COMMENT ""
) DUPLICATE KEY (`key`, `name`)
DISTRIBUTED BY HASH(`key`) BUCKETS 10
PROPERTIES (
"replication_allocation" = "tag.location.default: 3"
);

假设分页中每页显示100条记录。要获取第一页的数据,可以使用以下SQL查询:

select * from records_tbl order by `key`, `name` limit 100;

获取第二页的数据可以通过以下方式完成:

select * from records_tbl order by `key`, `name` limit 100, offset 100;

但是,在执行深度分页查询(具有较大偏移量)时,即使实际所需的数据行很少,该方法仍然会将所有数据读入内存中进行完整排序,然后再进行后续处理,这是非常低效的。使用自动递增列会为每行分配一个唯一值,从而允许使用where unique_value > x limit y预先过滤大量数据,从而提高分页效率

继续前面提到的业务表,向表中添加一个自动递增列,为每一行提供唯一标识符:

CREATE TABLE `demo`.`records_tbl2` (`key` int(11) NOT NULL COMMENT "",`name` varchar(26) NOT NULL COMMENT "",`address` varchar(41) NOT NULL COMMENT "",`city` varchar(11) NOT NULL COMMENT "",`nation` varchar(16) NOT NULL COMMENT "",`region` varchar(13) NOT NULL COMMENT "",`phone` varchar(16) NOT NULL COMMENT "",`mktsegment` varchar(11) NOT NULL COMMENT "",`unique_value` BIGINT NOT NULL AUTO_INCREMENT
) DUPLICATE KEY (`key`, `name`)
DISTRIBUTED BY HASH(`key`) BUCKETS 10
PROPERTIES ("replication_num" = "3"
);

对于每页显示100条记录的分页,要获取第一页的数据,可以使用以下SQL查询:

select * from records_tbl2 order by unique_value limit 100;

通过记录返回结果中的unique_value的最大值,我们假设它是99。下面的查询可以获取第二页的数据:

select * from records_tbl2 where unique_value > 99 order by unique_value limit 100;

如果直接查询后一页的内容,不方便直接从前一页的数据中获取unique_value的最大值(例如直接获取第101页的内容),可以使用以下查询:

select key, name, address, city, nation, region, phone, mktsegment
from records_tbl2, (select unique_value as max_value from records_tbl2 order by unique_value limit 1 offset 9999) as previous_data
where records_tbl2.unique_value > previous_data.max_value
order by records_tbl2.unique_value limit 100;

这篇关于Apache Doris 基础 -- 数据表设计(使用AUTO_INCREMENT)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030743

相关文章

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http