chatTTS打破人机对话的壁垒 短视频、小说配音营销场景大杀器

本文主要是介绍chatTTS打破人机对话的壁垒 短视频、小说配音营销场景大杀器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

过去我们让AI说话,它给出的总是不咸不淡的机器合成声音,毫无波澜的死板音调让人听得昏昏欲睡。但由于chatTTS的到来,一切都将会变得不一样。作为一款强大的对话式文本转语音模型,它完美解决了用户对于生动对话的需求。如此功能不可小觑,可以称得上在业界一骑绝尘。对于短视频内容创作,有声小说配音,数字营销推广以及日常办公,它都可以成为强有力的助手。此外,该项目还衍生出音色抽卡,长文本推理,角色扮演等功能。

0f9f7e86c6970eb05c458fe24c6ddd48.jpeg

项目简介

ChatTTS由2noise推出,是专门为对话场景设计的文本转语音模型,例如LLM助手对话任务。使用非常简单,只需输入文本和信息,就可以生成相应的语音文件。它同时支持英文和中文,两种语言的发声效果都非常良好,甚至你可以输入中英文混搭的语句,它也能切换自如,轻松驾驭。

ChatTTS的训练量也是十分惊人。最大的模型使用了10万小时以上的中英文数据进行训练。在HuggingFace中开源的版本为4万小时训练且未SFT的版本。

ChatTTS非常适合处理通常分配给大型语言模型LLM的对话框任务。当集成到各种应用程序和服务中时,它可以生成对话响应,并提供更自然、更流畅的交互体验。

4bd84944fb10cedc153ab5eea7eaafc5.jpeg

核心功能

1. ChatTTS文本转语音

ChatTTS能够生成自然流畅的语音,输入的文本里允许加入笑声 [laugh] 和停顿 [uv_break] 作为韵律标记,可操作性很强。有了这些停顿和语气词等副语言现象,它听起来就像是我们在日常生活中的自然交流。它的发声也是不拘一格,比如你提问四川当地有哪些美食,它给出的回答还会带有一点口音!

2b7755549f5d97e7e2ebd8553f3ab08f.jpeg

几个示例https://colab.research.google.com/github/Kedreamix/ChatTTS/blob/main/ChatTTS_infer.ipynb#scrollTo=_xrONBIj9oxo

如果让它朗读/陈述信息,可以听到音质相当不错,声音清晰饱满,背景噪音较少,语速适中,声调平稳,英文发音颇为地道。。。这简直是广播电台的播音员无疑了!当然,也存在发音词带有吞音之类的问题,不过还是瑕不掩瑜。

如果让它读故事,那听起来真是抑扬顿挫,它时而提升声调突出重点,时而放缓过渡,同时也能处理好断句。

总的来说,ChatTTS针对对话式任务进行了优化,实现了自然流畅的语音合成,同时支持多说话人。生成效果上,不论是语调还是语气的变化,都比较细腻,非常接近真人的说话方式,不会停留在单一的音调上显得生硬。整体上声音很连贯,不会有别扭的感觉。

2.细粒度控制--韵律调整:

该模型能够预测和控制细粒度的韵律特征,包括笑声、停顿和插入词等。前面我们有提到过韵律特征:停顿和笑声,实际上模型有许许多多种韵律的调整,不仅限于文本里常见的附加[uv_break]和[laugh](实际上笑声也有三种,[laugh_0]、[laugh_1]、[laugh_2]),还有[music]、[pure]、[oral_0]、[speed_3]、[Stts]、[Ptts]等,标记处上下文都会受到程度不一的影响,这样可以很好地做到控制情绪的表达而不显突兀。当然,目前运用参数自动地对文本的预处理还是不够精细的,可能还是需要一定的人工处理,不然将会更为理想。

言而总之,这个模型可以精确控制韵律元素包括笑声,停顿和语调等韵律元素。

项目实操

基础用法

import ChatTTS from IPython.display import Audio chat = ChatTTS.Chat() chat.load_models(compile=False) # Set to True for better performance texts = ["PUT YOUR TEXT HERE",] wavs = chat.infer(texts, ) torchaudio.save("output1.wav", torch.from_numpy(wavs[0]), 24000)

进阶用法

说话人生成的主要方法是先从高斯噪声中采样,然后得到一个固定长度的说话人向量,最后作为额外的信息,输入到网络。给出的项目音色本来是不能固定的,但我们可以通过固定随机种子,将音色固定,解决音色过于随机的问题

################################### # Sample a speaker from Gaussian. rand_spk = chat.sample_random_speaker() params_infer_code = { 'spk_emb': rand_spk, # add sampled speaker 'temperature': .3, # using custom temperature 'top_P': 0.7, # top P decode 'top_K': 20, # top K decode } ################################### # For sentence level manual control. # use oral_(0-9), laugh_(0-2), break_(0-7) # to generate special token in text to synthesize. params_refine_text = { 'prompt': '[oral_2][laugh_0][break_6]' } wav = chat.infer(texts, params_refine_text=params_refine_text, params_infer_code=params_infer_code) ################################### # For word level manual control. text = 'What is [uv_break]your favorite english food?[laugh][lbreak]' wav = chat.infer(text, skip_refine_text=True, params_refine_text=params_refine_text, params_infer_code=params_infer_code) torchaudio.save("output2.wav", torch.from_numpy(wavs[0]), 24000) 570164a4992c35333a57f7726db998bb.jpeg

如有兴趣可以点击以下链接了解更多细节:

https://github.com/2noise/ChatTTS/blob/main/README_CN.md

https://github.com/ultrasev/ChatTTS/blob/master/README.md

https://colab.research.google.com/github/Kedreamix/ChatTTS/blob/main/ChatTTS_infer.ipynb#scrollTo=_xrONBIj9oxo

高性价比GPU资源:https://www.ucloud.cn/site/active/gpu.html?ytag=gpu_wenzhang_tongyong_shemei

这篇关于chatTTS打破人机对话的壁垒 短视频、小说配音营销场景大杀器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030353

相关文章

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示