深入解析ETL与ELT架构:数据集成技术的演进与发展

2024-06-04 11:20

本文主要是介绍深入解析ETL与ELT架构:数据集成技术的演进与发展,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要:随着大数据时代的到来,数据集成成为企业信息化建设的重要环节。本文将深入探讨ETL与ELT两种架构,分析它们在数据处理、性能、可扩展性等方面的差异,为企业数据集成提供技术指导。

一、引言

在大数据时代,企业需要从各种数据源中提取、转换和加载(ETL)数据,以支持业务决策和数据分析。传统的ETL架构已经无法满足现代企业对实时性、可扩展性和灵活性等方面的需求。因此,ELT架构逐渐崭露头角,成为企业数据集成的新选择。本文将对比分析ETL与ELT架构,探讨各自的优势与应用场景。

二、ETL架构

ETL(Extract, Transform, Load)架构是传统的数据集成方式,它将数据从源系统提取出来,经过一系列转换处理后,再加载到目标系统中。ETL架构主要包括以下几个步骤:

  1. 数据提取(Extract):从源系统中提取所需数据,可以是数据库、文件、API等多种数据源。

  2. 数据转换(Transform):对提取的数据进行清洗、过滤、合并、计算等操作,以满足业务需求。

  3. 数据加载(Load):将转换后的数据加载到目标系统中,如数据仓库、数据湖等。

ETL架构的优势在于:

  1. 数据质量:在数据加载到目标系统之前进行转换,可以确保数据质量和一致性。

  2. 性能优化:通过预先设计好的转换流程,可以优化数据处理性能,提高效率。

  3. 易于维护:ETL流程通常由专业的ETL工具实现,便于维护和管理。

然而,ETL架构也存在一定的局限性:

  1. 批处理延迟:ETL流程通常是批处理的,导致数据实时性较差。

  2. 扩展性受限:随着数据量的增长,ETL架构可能面临性能瓶颈。

  3. 灵活性不足:业务需求变化时,ETL流程需要重新设计和开发。

三、ELT架构

ELT(Extract, Load, Transform)架构是近年来兴起的一种数据集成方式,它将数据提取和加载到目标系统后,再进行转换处理。ELT架构主要包括以下几个步骤:

  1. 数据提取(Extract):从源系统中提取所需数据。

  2. 数据加载(Load):将提取的数据直接加载到目标系统中,如数据仓库、数据湖等。

  3. 数据转换(Transform):在目标系统内进行数据转换处理,如使用SQL、Spark等计算引擎。

ELT架构的优势在于:

  1. 实时性:数据提取和加载后立即进行转换,提高了数据的实时性。

  2. 可扩展性:借助分布式计算引擎,ELT架构可以轻松应对大数据量的处理。

  3. 灵活性:业务需求变化时,只需调整转换逻辑,无需重新设计ETL流程。

然而,ELT架构也存在一定的挑战:

  1. 数据质量:数据加载到目标系统后进行转换,可能导致数据质量问题。

  2. 性能压力:在目标系统内进行转换处理,可能对系统性能产生压力。

 

四、总结

ETL与ELT架构各有优势,企业应根据自身业务需求和数据特点选择合适的架构。对于实时性、可扩展性和灵活性要求较高的场景,ELT架构具有明显优势;而对于数据质量、性能和易于维护方面有较高要求的场景,ETL架构仍然适用。随着大数据技术的发展,未来ETL与ELT架构将不断融合和演进,为企业的数据集成提供更强大的支持。

这篇关于深入解析ETL与ELT架构:数据集成技术的演进与发展的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1029941

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

mybatis的整体架构

mybatis的整体架构分为三层: 1.基础支持层 该层包括:数据源模块、事务管理模块、缓存模块、Binding模块、反射模块、类型转换模块、日志模块、资源加载模块、解析器模块 2.核心处理层 该层包括:配置解析、参数映射、SQL解析、SQL执行、结果集映射、插件 3.接口层 该层包括:SqlSession 基础支持层 该层保护mybatis的基础模块,它们为核心处理层提供了良好的支撑。

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06