AIGC 011-SAM第一个图像分割大模型-分割一切!

2024-06-04 10:44

本文主要是介绍AIGC 011-SAM第一个图像分割大模型-分割一切!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AIGC 011-SAM第一个图像分割大模型-分割一切!


文章目录

    • 0 论文工作
    • 1论文方法
    • 2 效果

0 论文工作

这篇论文介绍了 Segment Anything (SA) 项目,这是一个全新的图像分割任务、模型和数据集。SA 项目是一个具有里程碑意义的工作,它为图像分割领域带来了新的机遇和挑战。该项目的模型和数据集将推动计算机视觉基础模型的研究,为构建更强大、更通用的图像分割模型奠定基础。

Segment Anything (SA) 项目提出了一种新的图像分割任务、模型和数据集。研究人员利用一个高效的模型,在数据收集循环中构建了迄今为止最大的分割数据集,包含超过 10 亿个掩码,覆盖了 1100 万张经过许可和尊重隐私的图像。该模型被设计并训练成可提示的,因此它可以零样本迁移到新的图像分布和任务中。对多个任务的评估表明,该模型的零样本性能令人印象深刻,通常可以与或甚至超过先前完全监督的结果。为了促进计算机视觉基础模型的研究,Segment Anything 模型 (SAM) 和包含 10 亿个掩码和 1100 万张图像的对应数据集 (SA-1B) 已发布在 https://segment-anything.com 上。
CLIP-diffusion-SAM-LRM再有就是一些多模态大模型,可以发现大模型的能力开始在开始在不同的视觉任务上开始涌现。
从目前来看无论2d还是3d方面都是大力出奇迹。在十亿级别的数据上2d大模型能力得到很强的展现。在这一点上3d数据集就差很多,一方面数据量有限,另外一方面3d数据集都是合成数据集,对模型泛化能力还是有限制。
接下来我们想分享的3d理解的论文,无论是nerf基还是Gaussian基都是以CLIP或者SAM为基础。这真的是一件很酷的事情。
论文链接
github
objaverse

1论文方法

  1. 任务、模型和数据集:
    任务: SA 项目定义了一个新的图像分割任务,旨在构建一个可以处理各种图像和分割场景的通用模型。
    模型: 论文提出了一种高效的分割模型,可以被提示(promptable),即可以零样本迁移到新的图像分布和任务中。
    数据集: 该项目构建了迄今为止最大的分割数据集,包含超过 10 亿个掩码,覆盖了 1100 万张经过许可和尊重隐私的图像。
    在这里插入图片描述
  2. 模型特点:
    可提示性: 模型被设计成可提示的,这意味着它可以根据不同的提示(例如点、框或文本描述)进行分割,无需重新训练。
    零样本迁移: 模型可以零样本迁移到新的图像分布和任务中,无需额外的训练数据。
  3. 评估结果:
    论文在多个任务上评估了模型的能力,发现其零样本性能非常出色,通常可以与或甚至超过先前完全监督的结果。
  4. 贡献:
    SAM项目定义了一个新的图像分割任务,为计算机视觉领域的研究开辟了新方向。
    SAM模型 (SAM) 和数据集 (SA-1B) 的发布,将推动计算机视觉基础模型的研究。
    方法实现:
    论文没有详细描述模型的具体实现细节,但强调模型的可提示性和零样本迁移能力。zero-shot的能力主要还是对比学习来展现的,即相似度。
    论文中提到模型是高效的,可能使用了Transformer 或者其他高效的架构。
    优点:
    大规模数据集: SAM数据集的规模非常大,包含了丰富的图像和分割信息,有助于训练更强大的模型。
    可提示性: 模型的可提示性使其可以处理各种分割任务,提高了模型的通用性。
    零样本迁移: 模型的零样本迁移能力,降低了模型应用的门槛,方便研究人员将其应用于新的任务和场景。

2 效果

这个可以去官网去体验。
在这里插入图片描述

这篇关于AIGC 011-SAM第一个图像分割大模型-分割一切!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1029857

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

使用Python实现批量分割PDF文件

《使用Python实现批量分割PDF文件》这篇文章主要为大家详细介绍了如何使用Python进行批量分割PDF文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、架构设计二、代码实现三、批量分割PDF文件四、总结本文将介绍如何使用python进js行批量分割PDF文件的方法

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求