pytorch笔记:自动混合精度(AMP)

2024-06-04 07:36

本文主要是介绍pytorch笔记:自动混合精度(AMP),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 理论部分

1.1 FP16 VS FP32

  • FP32具有八个指数位和23个小数位,而FP16具有五个指数位和十个小数位
  • Tensor内核支持混合精度数学,即输入为半精度(FP16),输出为全精度(FP32)

1.1.1 使用FP16的优缺点

  • 优点
    • FP16需要较少的内存,因此更易于训练和部署大型神经网络,同时还减少了数据移动(同时可以使用更大的batch)
    • 数学运算的运行速度大大降低了
      • NVIDIA提供的Volta GPU的确切数量是:FP16中为125 TFlops,而FP32中为15.7 TFlops(加速8倍)
  • 缺点:
    • 从FP32转到FP16时,必然会降低精度
      • 但有的时候,这个精度的降低可以忽略不计
      • FP16实际上可以很好地表示大多数权重和渐变。
      • ——>拥有存储和使用FP32所需的所有这些额外位只是浪费。
    • 溢出错误
      • 由于FP16的动态范围比FP32位的狭窄很多,因此,在计算过程中很容易出现上溢出和下溢出
      • 溢出之后就会出现"NaN"的问题

1.2 解决上述FP16的问题

1.2.1 混合精度训练

  • 用FP16做储存和乘法,而用FP32做累加避免舍入误差
  • ——>混合精度训练的策略有效地缓解了舍入误差的问题

1.2.2 损失放大(Loss scaling)

  • 即使使用了混合精度训练,还是存在无法收敛的情况
    • 原因是激活梯度的值太小,造成了溢出。
  • ——>通过使用torch.cuda.amp.GradScaler,通过放大loss的值来防止梯度的下溢出
    • 只在BP时传递梯度信息使用,真正更新权重时还是要把放大的梯度再unscale回去
      • 反向传播前,将损失变化手动增大2^k倍

        • 因此反向传播时得到的中间变量(激活函数梯度)不会溢出;

      • 反向传播后,将权重梯度缩小2^k倍,恢复正常值。

2 torch.cuda.amp

  • AMP(自动混合精度)的关键词有两个:
    • 自动
      • Tensor的dtype类型会自动变化,框架按需自动调整tensor的dtype,当然有些地方还需手动干预
    • 混合精度
      • 采用不止一种精度的Tensor,torch.FloatTensor和torch.HalfTensor

2.1 Pytorch中不同类型的tensor

类型名称位数
torch.DoubleTensor64bit
torch.LongTensor64bit
torch.FloatTensor(默认)32bit
torch.IntTensor32bit
torch.HalfTensor16bit
torch.BFloat16Tensor16bit
torch.ShortTensor16bit
torch.ByteTensor(无符号)8bit
torch.CharTensor8bit
torch.BoolTensorBoolean

2.2 在AMP上下文中,被自动转化为半精度浮点型的参数:

__matmul__
addbmm
addmm
addmv
addr
baddbmm
bmm
chain_matmul
conv1d
conv2d
conv3d
conv_transpose1d
conv_transpose2d
conv_transpose3d
linear
matmul
mm
mv
prelu

2.3 autocast

from torch.cuda.amp import autocast as autocastmodel = Net().cuda()
#首先初始化一个网络模型Net(),并使用.cuda()方法将模型移至GPU上以利用GPU加速
#Net中的参数默认是torch.FloatTensoroptimizer = optim.SGD(model.parameters(), ...)for input, target in data:optimizer.zero_grad()with autocast():output = model(input)loss = loss_fn(output, target)'''自动混合精度环境包含了前向过程(模型的输出)和loss的计算把支持参数对应tensor的dtype转换为半精度浮点型,从而在不损失训练精度的情况下加快运算进入autocast的上下文时,tensor可以是任何类型不需要在model或者input上手工调用.half() ,框架会自动做'''loss.backward()optimizer.step()# 反向传播在autocast上下文之外

 2.4 GradScaler

在2.3的基础上增加,反向传播时增加梯度,以防止下溢出

from torch.cuda.amp import autocast as autocast
from torch.cuda.amp import GradScalermodel = Net().cuda()
#首先初始化一个网络模型Net(),并使用.cuda()方法将模型移至GPU上以利用GPU加速
#Net中的参数默认是torch.FloatTensoroptimizer = optim.SGD(model.parameters(), ...)scaler = GradScaler()
# 在训练最开始之前实例化一个GradScaler对象for epoch in epochs:for input, target in data:optimizer.zero_grad()with autocast():output = model(input)loss = loss_fn(output, target)'''自动混合精度环境包含了前向过程(模型的输出)和loss的计算把支持参数对应tensor的dtype转换为半精度浮点型,从而在不损失训练精度的情况下加快运算进入autocast的上下文时,tensor可以是任何类型不需要在model或者input上手工调用.half() ,框架会自动做'''scaler.scale(loss).backward()# Scales loss. 为了梯度放大,防止下溢出# 代替原来的loss.backward()scaler.step(optimizer)'''scaler.step() 首先把梯度的值unscale回来.如果梯度的值不是 infs 或者 NaNs, 那么调用optimizer.step()来更新权重,否则,忽略step调用,从而保证权重不更新(不被破坏)'''scaler.update()'''准备着,看是否要增大scaler'''
  •  scaler的大小在每次迭代中动态的估计
    • 为了尽可能的减少梯度underflow,scaler应该更大
    • 但是如果太大的话,半精度浮点型的tensor又容易overflow(变成inf或者NaN)。
  • ——>动态估计的原理就是在不出现inf或者NaN梯度值的情况下尽可能的增大scaler的值

3 一些tips

  • 为了保证计算不溢出,首先保证人工设定的常数不溢出。如epsilon,INF等
  • Dimension最好是8的倍数:维度是8的倍数,性能最好
  • 涉及sum的操作要小心,容易溢出
    • 比如softmax操作,建议用官方API,并定义成layer写在模型初始化里
  • 如果遇到以下的报错:
    • RuntimeError: expected scalar type float but found c10::Half
    • 需要手动在tensor上调用.float()

这篇关于pytorch笔记:自动混合精度(AMP)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1029456

相关文章

微信公众号脚本-获取热搜自动新建草稿并发布文章

《微信公众号脚本-获取热搜自动新建草稿并发布文章》本来想写一个自动化发布微信公众号的小绿书的脚本,但是微信公众号官网没有小绿书的接口,那就写一个获取热搜微信普通文章的脚本吧,:本文主要介绍微信公众... 目录介绍思路前期准备环境要求获取接口token获取热搜获取热搜数据下载热搜图片给图片加上标题文字上传图片

SpringBoot中封装Cors自动配置方式

《SpringBoot中封装Cors自动配置方式》:本文主要介绍SpringBoot中封装Cors自动配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot封装Cors自动配置背景实现步骤1. 创建 GlobalCorsProperties

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

一文详解SQL Server如何跟踪自动统计信息更新

《一文详解SQLServer如何跟踪自动统计信息更新》SQLServer数据库中,我们都清楚统计信息对于优化器来说非常重要,所以本文就来和大家简单聊一聊SQLServer如何跟踪自动统计信息更新吧... SQL Server数据库中,我们都清楚统计信息对于优化器来说非常重要。一般情况下,我们会开启"自动更新

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

Flask 验证码自动生成的实现示例

《Flask验证码自动生成的实现示例》本文主要介绍了Flask验证码自动生成的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 目录生成图片以及结果处理验证码蓝图html页面展示想必验证码大家都有所了解,但是可以自己定义图片验证码

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

Python Excel实现自动添加编号

《PythonExcel实现自动添加编号》这篇文章主要为大家详细介绍了如何使用Python在Excel中实现自动添加编号效果,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍简单的说,就是在Excel中有一列h=会有重复

Python中如何控制小数点精度与对齐方式

《Python中如何控制小数点精度与对齐方式》在Python编程中,数据输出格式化是一个常见的需求,尤其是在涉及到小数点精度和对齐方式时,下面小编就来为大家介绍一下如何在Python中实现这些功能吧... 目录一、控制小数点精度1. 使用 round() 函数2. 使用字符串格式化二、控制对齐方式1. 使用