python 各种画图(2D 3D)-1 _matplotlib 官方网站笔记

2024-06-04 03:12

本文主要是介绍python 各种画图(2D 3D)-1 _matplotlib 官方网站笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

需利用python进行3D可视化处理,用于分析python得到的数据的正确性。

知识学习

python高阶3D绘图---pyvista模块,mayavi模块,pyopengl模块,MoviePy模块基础使用-CSDN博客

python用于3D绘图的模块比较多,pyvista模块,mayavi模块,pyopengl模块,MoviePy模块matplotlib库。建议直接看官方教程比较快。工具很多,具体使用哪一种,根据各模块的特点选用。

如下官网链接

Mayavi: 3D scientific data visualization and plotting in Python — mayavi 4.8.3.dev0 文档

Matplotlib 文档_Matplotlib 中文网

Matplotlib — Visualization with Python  (推荐看英文官网)

Examples — PyVista 0.43.1 documentation

PyOpenGL -- The Python OpenGL Binding (sourceforge.net)

MoviePy中文手册 — moviepy-cn 文档

应用

代码如下:

这个项目是因为,已经将得到的数据存在xlsx中,所以增加了读数据的操作,直接调用python的数据也一样,主要用到如下代码用于3d 散点图的显示

# 显示图形fig = plt.figure(figsize=(10, 8))  # 设置图形大小ax = fig.add_subplot(111, projection='3d')ax.scatter(Oab_rows_x, Oab_rows_y, Oab_rows_z, label='O set', s=1, alpha=0.8)ax.scatter(Pxb_rows_x, Pxb_rows_y, Pxb_rows_z, color='red', label='x set', s=1, alpha=0.8)ax.scatter(Pyb_rows_x, Pyb_rows_y, Pyb_rows_z, color='black', label='y set', s=1, alpha=0.8)# 添加图例ax.legend()plt.show()

官网中还有很多图例,如下截图 

 怎么设置图例,出图漂亮

 一个应用代码如下: (仅做学习记录,画图看官网)


import numpy as np
import math
import pandas as pdimport matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as pltimport openxlsx# 主函数
def main(excel_file, sheet_name):# 读取Excel文件df = pd.read_excel(excel_file, sheet_name=sheet_name)result_rows = []Oab_rows_x = []Oab_rows_y = []Oab_rows_z = []Pxb_rows_x = []Pxb_rows_y = []Pxb_rows_z = []Pyb_rows_x = []Pyb_rows_y = []Pyb_rows_z = []# 遍历DataFrame的每一行for index, row in df.iterrows():Oab = np.array([row['Oab_x'], row['Oab_y'], row['Oab_z']])Pxb = np.array([row['Pxb_x'], row['Pxb_y'], row['Pxb_z']])Pyb = np.array([row['Pyb_x'], row['Pyb_y'], row['Pyb_z']])Oab_row_x = Oab[0]Oab_rows_x.append(Oab_row_x)Oab_row_y = Oab[1]Oab_rows_y.append(Oab_row_y)Oab_row_z = Oab[2]Oab_rows_z.append(Oab_row_z)Pxb_row_x = Pxb[0]Pxb_rows_x.append(Pxb_row_x)Pxb_row_y = Pxb[1]Pxb_rows_y.append(Pxb_row_y)Pxb_row_z = Pxb[2]Pxb_rows_z.append(Pxb_row_z)Pyb_row_x = Pyb[0]Pyb_rows_x.append(Pyb_row_x)Pyb_row_y = Pyb[1]Pyb_rows_y.append(Pyb_row_y)Pyb_row_z = Pyb[2]Pyb_rows_z.append(Pyb_row_z)# 显示图形fig = plt.figure(figsize=(10, 8))  # 设置图形大小ax = fig.add_subplot(111, projection='3d')ax.scatter(Oab_rows_x, Oab_rows_y, Oab_rows_z, label='O set', s=1, alpha=0.8)ax.scatter(Pxb_rows_x, Pxb_rows_y, Pxb_rows_z, color='red', label='x set', s=1, alpha=0.8)ax.scatter(Pyb_rows_x, Pyb_rows_y, Pyb_rows_z, color='black', label='y set', s=1, alpha=0.8)# 添加图例ax.legend()plt.show()# 调用主函数
if __name__ == "__main__":excel_file = 'C:\\Users\Desktop\output.xlsx'  # 假设Excel文件名是data.xlsxsheet_name = 'Sheet 1'     # 假设数据在第一个工作表上main(excel_file, sheet_name)

其中如下代码是因为报错,可参照链接解决。

import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt

matplotlib:报错:ImportError: Cannot load backend ‘TkAgg‘ which requires the ‘tk‘ interactive 的处理记录_importerror: cannot load backend 'tkagg' which req-CSDN博客

拓展:matplotlib 官方网站

按数据分类:

Pairwise data#   

成对、表格、 和函数数据。\((x, y)\)\((var\_0, \cdots, var\_n)\)\(f(x)=y\)

统计类数据

数据集中至少一个变量的分布图。其中一些方法还计算分布。

 网格化数据

不规则的网格化数据

3D和立体数据

用户指导

目录如下

Quick start guide#

  • A simple example
  • Parts of a Figure
  • Types of inputs to plotting functions
  • Coding styles
  • Styling Artists
  • Labelling plots
    • Axes labels and text
    • Using mathematical expressions in text
    • Annotations
    • Legends
  • Axis scales and ticks
  • Color mapped data
  • Working with multiple Figures and Axes
  • More reading

上图是figure的组成元素。要是绘制简单的图形,直接参照Quick start guide官方代码。也可以直接看教程。

教程

Introductory#  初级

  • Quick start guide

  • Customizing Matplotlib with style sheets and rcParams  自定义属性及参数设置

  • Animations using Matplotlib       动画

Intermediate 中级

  • Legend guide        图例指南

  • Styling with cycler   演示自定义属性周期设置,以控制多线绘图的颜色和其他样式属性。

  • Constrained layout guide  约束布局

  • Tight layout guide      紧凑布局

  • Arranging multiple Axes in a Figure  多坐标

  • Autoscaling Axis   可缩放

  • origin and extent in imshow  

Advanced 高级

  • Faster rendering by using blitting   动画

  • Path Tutorial  轨迹

  • Path effects guide   轨迹效果

  • Transformations Tutorial    官网说应用较少

Colors  颜色设置

See Colors.

Text  文本设置

See Text.

Toolkits  工具箱子

See User Toolkits.

  • The axisartist toolkit    自定义轴类
  • The axes_grid1 toolkit  网格图工具
  • The mplot3d toolkit    3D图工具

Contents

  • The mplot3d toolkit

    • Line plots

    • Scatter plots

    • Wireframe plots

    • Surface plots

    • Tri-Surface plots

    • Contour plots

    • Filled contour plots

    • Polygon plots

    • Bar plots

    • Quiver

    • 2D plots in 3D

    • Text

这篇关于python 各种画图(2D 3D)-1 _matplotlib 官方网站笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028901

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear