Datacamp 笔记代码 Unsupervised Learning in Python 第三章 Decorrelating your data and dimension reduction

本文主要是介绍Datacamp 笔记代码 Unsupervised Learning in Python 第三章 Decorrelating your data and dimension reduction,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更多原始数据文档和JupyterNotebook
Github: https://github.com/JinnyR/Datacamp_DataScienceTrack_Python

Datacamp track: Data Scientist with Python - Course 23 (3)

Exercise

Correlated data in nature

You are given an array grains giving the width and length of samples of grain. You suspect that width and length will be correlated. To confirm this, make a scatter plot of width vs length and measure their Pearson correlation.

Instruction

  • Import:
    • matplotlib.pyplot as plt.
    • pearsonr from scipy.stats.
  • Assign column 0 of grains to width and column 1 of grains to length.
  • Make a scatter plot with width on the x-axis and lengthon the y-axis.
  • Use the pearsonr() function to calculate the Pearson correlation of width and length.
import pandas as pdgrains = pd.read_csv('https://s3.amazonaws.com/assets.datacamp.com/production/course_2141/datasets/seeds-width-vs-length.csv', header=None).values
# Perform the necessary imports
import matplotlib.pyplot as plt
from scipy.stats import pearsonr# Assign the 0th column of grains: width
width = grains[:,0]# Assign the 1st column of grains: length
length = grains[:,1]# Scatter plot width vs length
plt.scatter(width, length)
plt.axis('equal')
plt.show()# Calculate the Pearson correlation
correlation, pvalue = pearsonr(width, length)# Display the correlation
print(correlation)

[外链图片转存失败(img-fyXaqT3p-1564520846485)(output_2_0.png)]

0.8604149377143467

Exercise

Decorrelating the grain measurements with PCA

You observed in the previous exercise that the width and length measurements of the grain are correlated. Now, you’ll use PCA to decorrelate these measurements, then plot the decorrelated points and measure their Pearson correlation.

Instruction

  • Import PCA from sklearn.decomposition.
  • Create an instance of PCA called model.
  • Use the .fit_transform() method of model to apply the PCA transformation to grains. Assign the result to pca_features.
  • The subsequent code to extract, plot, and compute the Pearson correlation of the first two columns pca_features has been written for you, so hit ‘Submit Answer’ to see the result!
# Import PCA
from sklearn.decomposition import PCA# Create PCA instance: model
model = PCA()# Apply the fit_transform method of model to grains: pca_features
pca_features = model.fit_transform(grains)# Assign 0th column of pca_features: xs
xs = pca_features[:,0]# Assign 1st column of pca_features: ys
ys = pca_features[:,1]# Scatter plot xs vs ys
plt.scatter(xs, ys)
plt.axis('equal')
plt.show()# Calculate the Pearson correlation of xs and ys
correlation, pvalue = pearsonr(xs, ys)# Display the correlation
print(correlation

这篇关于Datacamp 笔记代码 Unsupervised Learning in Python 第三章 Decorrelating your data and dimension reduction的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028853

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Python手搓邮件发送客户端

《Python手搓邮件发送客户端》这篇文章主要为大家详细介绍了如何使用Python手搓邮件发送客户端,支持发送邮件,附件,定时发送以及个性化邮件正文,感兴趣的可以了解下... 目录1. 简介2.主要功能2.1.邮件发送功能2.2.个性签名功能2.3.定时发送功能2. 4.附件管理2.5.配置加载功能2.6.