Datacamp 笔记代码 Machine Learning with the Experts: School Budgets 第二章 Creating a simple first model

本文主要是介绍Datacamp 笔记代码 Machine Learning with the Experts: School Budgets 第二章 Creating a simple first model,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更多原始数据文档和JupyterNotebook
Github: https://github.com/JinnyR/Datacamp_DataScienceTrack_Python

Datacamp track: Data Scientist with Python - Course 22 (2)

Exercise

Setting up a train-test split in scikit-learn

Alright, you’ve been patient and awesome. It’s finally time to start training models!

The first step is to split the data into a training set and a test set. Some labels don’t occur very often, but we want to make sure that they appear in both the training and the test sets. We provide a function that will make sure at least min_count examples of each label appear in each split: multilabel_train_test_split.

Feel free to check out the full code for multilabel_train_test_split here.

You’ll start with a simple model that uses just the numeric columns of your DataFrame when calling multilabel_train_test_split. The data has been read into a DataFrame df and a list consisting of just the numeric columns is available as NUMERIC_COLUMNS.

Instruction

  • Create a new DataFrame named numeric_data_only by applying the .fillna(-1000) method to the numeric columns (available in the list NUMERIC_COLUMNS) of df.
  • Convert the labels (available in the list LABELS) to dummy variables. Save the result as label_dummies.
  • In the call to multilabel_train_test_split(), set the size of your test set to be 0.2. Use a seed of 123.
  • Fill in the .info() method calls for X_train, X_test, y_train, and y_test.
import pandas as pd
import numpy as np
from warnings import warn
from sklearn.feature_extraction.text import CountVectorizer#### DEFINE SAMPLING UTILITIES# First multilabel_sample, which is called by multilabel_train_test_splitdef multilabel_sample(y, size=1000, min_count=5, seed=None):   try:if (np.unique(y).astype(int) != np.array([0, 1])).all():raise ValueError()except (TypeError, ValueError):raise ValueError('multilabel_sample only works with binary indicator matrices')if (y.sum(axis=0) < min_count).any():raise ValueError('Some classes do not have enough examples. Change min_count if necessary.')if size <= 1:size = np.floor(y.shape[0] * size)if y.shape[1] * min_count > size:msg = "Size less than number of columns * min_count, returning {} items instead of {}."warn(msg.format(y.shape[1] * min_count, size))size = y.shape[1] * min_countrng = np.random.RandomState(seed if seed is not None else np.random.randint(1))if isinstance(y, pd.DataFrame):choices = y.indexy = y.valueselse:choices = np.arange(y.shape[0])sample_idxs = np.array([], dtype=choices.dtype)# first, guarantee > min_count of each labelfor j in range(y.shape[1]):label_choices = choices[y[:, j] == 1]label_idxs_sampled = rng.choice(label_choices, size=min_count, replace=False)sample_idxs = np.concatenate([label_idxs_sampled, sample_idxs])sample_idxs = np.unique(sample_idxs)# now that we have at least min_count of each, we can just random samplesample_count = size - sample_idxs.shape[0]# get sample_count indices from remaining choicesremaining_choices = np.setdiff1d(choices, sample_idxs)remaining_sampled = rng.choice(remaining_choices, size=sample_count

这篇关于Datacamp 笔记代码 Machine Learning with the Experts: School Budgets 第二章 Creating a simple first model的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028849

相关文章

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

D4代码AC集

贪心问题解决的步骤: (局部贪心能导致全局贪心)    1.确定贪心策略    2.验证贪心策略是否正确 排队接水 #include<bits/stdc++.h>using namespace std;int main(){int w,n,a[32000];cin>>w>>n;for(int i=1;i<=n;i++){cin>>a[i];}sort(a+1,a+n+1);int i=1

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear