基于多尺度相关小波分解的单幅图像去雾和去噪方法(MATLAB)

2024-06-03 17:12

本文主要是介绍基于多尺度相关小波分解的单幅图像去雾和去噪方法(MATLAB),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

小波变换具有优美的数学背景和强大的多分辨率分析能力。它集成和发展了短时傅里叶变换的思想并克服了其时间窗口不可变的缺点。小波变换通过使用具有局部感受野和多尺度的基函数。形成了同时具有局部和全局性质的信号表征。与DCT等全局变换相比,小波变换可以防止局部高频信息扩散到整个变换域,因而处理信号中的局部非平滑特征时更加高效。然而,由于前文所述的原因。传统小波变换在处理具有复杂特征的自然图像时不够高效。为了解决这些问题,一些改良版本的小波变换被提出,这包括非自适应小波变换和自适应小波变换两种类型。

在非自适应小波变换领域,Ridgelet被提出用于描述图像中任意方向的直线特征。Ridgelet首先使用Randon变换,将线特征变换为Randon空间中的点特征,从而实现方向检测和方向选择,然后再使用1D的小波变换。与Ridgelet仍然处理直线特征相比.Curvelet则可以处理更加广泛的曲线特征。本质上Curvelet是分块形式的Ridgelet,然而重叠的块划分会导致产生冗余的小波系数(即小波系数数量多于原始的像素数),这降低了Curvelet应用于图像编码时的效率。Contourlet是一种2D小波变换,它先使用子带分解然后执行方向变换。然而,由于在子带分解中使用金字塔分解,Contourlet也会产生冗余的小波系数,因此也不适合用于图像编码。在自适应小波变换领域,大多数的工作都基于小波的提升结构实现。

鉴于此,采用多尺度相关小波分解方法对单幅图像进行去雾和去噪,运行环境为MATLAB R2018A。


function d = waveletdehaze(f,level, wname)
if (~exist('level','var'))level = 2;
end
if (~exist('wname','var'))wname = 'sym4';
endcoef = 2^level;[C,S] = wavedec2(f,level,wname);% estimate the noise standard deviation from the detail coefficients at level 1
if level~=0det1 = detcoef2('compact',C,S,1);tau = median(abs(det1))/0.6745;
endA = appcoef2(C,S,wname,level);
[imD,t]= dehaze(A/coef,level); % removal haze in low frequency
NA=  (imD(:)*coef)';for n = level:-1:1[CHD,CVD,CDD] = detcoef2('all',C,S,n);t = imresize(t,[size(CHD,1),size(CHD,2)],'bicubic');tD = cat(3,t,t,t);CHD = wthresh(CHD,'s',tau);              %Eqn(12)CVD = wthresh(CVD,'s',tau);              %Eqn(12)CDD = wthresh(CDD,'s',tau);              %Eqn(12)NCHD = bsxfun(@rdivide,CHD,t);           %Equ(16)NCVD = bsxfun(@rdivide,CVD,t);           %Equ(16)NCDD = bsxfun(@rdivide,CDD,t);           %Equ(16) NA = [NA NCHD(:)' NCVD(:)' NCDD(:)'];
endd = waverec2(NA,S,wname);
完整代码:https://mbd.pub/o/bread/mbd-ZJeXmpts
d(d>1) = 1;
d(d<0) = 0;

图片

图片

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于基于多尺度相关小波分解的单幅图像去雾和去噪方法(MATLAB)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027605

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时