基于多尺度相关小波分解的单幅图像去雾和去噪方法(MATLAB)

2024-06-03 17:12

本文主要是介绍基于多尺度相关小波分解的单幅图像去雾和去噪方法(MATLAB),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

小波变换具有优美的数学背景和强大的多分辨率分析能力。它集成和发展了短时傅里叶变换的思想并克服了其时间窗口不可变的缺点。小波变换通过使用具有局部感受野和多尺度的基函数。形成了同时具有局部和全局性质的信号表征。与DCT等全局变换相比,小波变换可以防止局部高频信息扩散到整个变换域,因而处理信号中的局部非平滑特征时更加高效。然而,由于前文所述的原因。传统小波变换在处理具有复杂特征的自然图像时不够高效。为了解决这些问题,一些改良版本的小波变换被提出,这包括非自适应小波变换和自适应小波变换两种类型。

在非自适应小波变换领域,Ridgelet被提出用于描述图像中任意方向的直线特征。Ridgelet首先使用Randon变换,将线特征变换为Randon空间中的点特征,从而实现方向检测和方向选择,然后再使用1D的小波变换。与Ridgelet仍然处理直线特征相比.Curvelet则可以处理更加广泛的曲线特征。本质上Curvelet是分块形式的Ridgelet,然而重叠的块划分会导致产生冗余的小波系数(即小波系数数量多于原始的像素数),这降低了Curvelet应用于图像编码时的效率。Contourlet是一种2D小波变换,它先使用子带分解然后执行方向变换。然而,由于在子带分解中使用金字塔分解,Contourlet也会产生冗余的小波系数,因此也不适合用于图像编码。在自适应小波变换领域,大多数的工作都基于小波的提升结构实现。

鉴于此,采用多尺度相关小波分解方法对单幅图像进行去雾和去噪,运行环境为MATLAB R2018A。


function d = waveletdehaze(f,level, wname)
if (~exist('level','var'))level = 2;
end
if (~exist('wname','var'))wname = 'sym4';
endcoef = 2^level;[C,S] = wavedec2(f,level,wname);% estimate the noise standard deviation from the detail coefficients at level 1
if level~=0det1 = detcoef2('compact',C,S,1);tau = median(abs(det1))/0.6745;
endA = appcoef2(C,S,wname,level);
[imD,t]= dehaze(A/coef,level); % removal haze in low frequency
NA=  (imD(:)*coef)';for n = level:-1:1[CHD,CVD,CDD] = detcoef2('all',C,S,n);t = imresize(t,[size(CHD,1),size(CHD,2)],'bicubic');tD = cat(3,t,t,t);CHD = wthresh(CHD,'s',tau);              %Eqn(12)CVD = wthresh(CVD,'s',tau);              %Eqn(12)CDD = wthresh(CDD,'s',tau);              %Eqn(12)NCHD = bsxfun(@rdivide,CHD,t);           %Equ(16)NCVD = bsxfun(@rdivide,CVD,t);           %Equ(16)NCDD = bsxfun(@rdivide,CDD,t);           %Equ(16) NA = [NA NCHD(:)' NCVD(:)' NCDD(:)'];
endd = waverec2(NA,S,wname);
完整代码:https://mbd.pub/o/bread/mbd-ZJeXmpts
d(d>1) = 1;
d(d<0) = 0;

图片

图片

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于基于多尺度相关小波分解的单幅图像去雾和去噪方法(MATLAB)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027605

相关文章

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令