【Python】【matLab】模拟退火算法求二元高次函数最小值

2024-06-03 14:52

本文主要是介绍【Python】【matLab】模拟退火算法求二元高次函数最小值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、目标函数

求二元高次函数的最小值。目标函数选择:
在这里插入图片描述
用于测试算法的简单的目标函数:

在这里插入图片描述

二、Python代码实现

import numpy as np# 目标函数(2变量)
def objective_function(x):return x[0] ** 2 + 2 * x[0] - 15 + 4 * 4 * 2 * x[1] + 4 * x[1] ** 2# 测试:return x[0] ** 2 + x[1] ** 2# 模拟退火
def simulated_annealing(objective_func,  # 目标函数initial_solution=np.array([0, 0]),  # 初始解temperature=100,  # 初始温度min_temperature=0.1,  # 最小温度值cooling_rate=0.90,  # 冷却率(乘法系数)iter_max=100,  # 最大迭代次数seed=0  # 随机种子):np.random.seed(seed)current_solution = initial_solutionbest_solution = current_solutionwhile temperature > min_temperature:for j in range(iter_max):# 生成新的解new_solution = current_solution + np.random.uniform(-1, 1, len(current_solution))# 计算新解与当前解之间的目标函数值差异current_cost = objective_func(current_solution)new_cost = objective_func(new_solution)cost_diff = new_cost - current_cost# 判断是否接受新解if cost_diff < 0 or np.exp(-cost_diff / temperature) > np.random.random():current_solution = new_solution# 更新最优解if objective_func(current_solution) < objective_func(best_solution):best_solution = current_solution# 降低温度temperature *= cooling_ratereturn best_solution# 调用退火算法求解最小值
best_solution = simulated_annealing(objective_function)print(f"函数最小值: {objective_function(best_solution)} 自变量取值:{best_solution}")

代码参考博客:利用Python 实现 模拟退火算法

三、程序输出

测试函数输出:
在这里插入图片描述

目标函数输出:

在这里插入图片描述

四、MatLab验证程序

参考博客:MATLAB求解二元(多元)函数极值

先定义目标函数(位于fun2_3.m中):

function f = fun2_3(x)
f = x(1) ^ 2 + 2 * x(1) - 15 + 32 * x(2) + 4 * x(2) ^ 2;

模拟退火算法求极值:

clc, clear
[x, y]=meshgrid(-10:0.3:10,-10:0.3:10);
z = x.^2 + 2 * x -15 + 32 * y + 4 * y.^2;
figure(1)
surf(x,y,z)
xlabel('X');
ylabel('Y');
zlabel('Z');figure(2)
contour(x,y,z)
xlabel('X');
ylabel('Y');
grid on;x0=[-3,-3];
% [x,fmin]=fminsearch(@fun2_3,x0)
[x,fmin] = fminunc(@fun2_3,x0)

程序输出:
在这里插入图片描述

在这里插入图片描述在这里插入图片描述可见,两种方法的求解结果基本相同。

这篇关于【Python】【matLab】模拟退火算法求二元高次函数最小值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027306

相关文章

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步