本文主要是介绍【Python】【matLab】模拟退火算法求二元高次函数最小值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、目标函数
求二元高次函数的最小值。目标函数选择:
用于测试算法的简单的目标函数:
二、Python代码实现
import numpy as np# 目标函数(2变量)
def objective_function(x):return x[0] ** 2 + 2 * x[0] - 15 + 4 * 4 * 2 * x[1] + 4 * x[1] ** 2# 测试:return x[0] ** 2 + x[1] ** 2# 模拟退火
def simulated_annealing(objective_func, # 目标函数initial_solution=np.array([0, 0]), # 初始解temperature=100, # 初始温度min_temperature=0.1, # 最小温度值cooling_rate=0.90, # 冷却率(乘法系数)iter_max=100, # 最大迭代次数seed=0 # 随机种子):np.random.seed(seed)current_solution = initial_solutionbest_solution = current_solutionwhile temperature > min_temperature:for j in range(iter_max):# 生成新的解new_solution = current_solution + np.random.uniform(-1, 1, len(current_solution))# 计算新解与当前解之间的目标函数值差异current_cost = objective_func(current_solution)new_cost = objective_func(new_solution)cost_diff = new_cost - current_cost# 判断是否接受新解if cost_diff < 0 or np.exp(-cost_diff / temperature) > np.random.random():current_solution = new_solution# 更新最优解if objective_func(current_solution) < objective_func(best_solution):best_solution = current_solution# 降低温度temperature *= cooling_ratereturn best_solution# 调用退火算法求解最小值
best_solution = simulated_annealing(objective_function)print(f"函数最小值: {objective_function(best_solution)} 自变量取值:{best_solution}")
代码参考博客:利用Python 实现 模拟退火算法
三、程序输出
测试函数输出:
目标函数输出:
四、MatLab验证程序
参考博客:MATLAB求解二元(多元)函数极值
先定义目标函数(位于fun2_3.m中):
function f = fun2_3(x)
f = x(1) ^ 2 + 2 * x(1) - 15 + 32 * x(2) + 4 * x(2) ^ 2;
模拟退火算法求极值:
clc, clear
[x, y]=meshgrid(-10:0.3:10,-10:0.3:10);
z = x.^2 + 2 * x -15 + 32 * y + 4 * y.^2;
figure(1)
surf(x,y,z)
xlabel('X');
ylabel('Y');
zlabel('Z');figure(2)
contour(x,y,z)
xlabel('X');
ylabel('Y');
grid on;x0=[-3,-3];
% [x,fmin]=fminsearch(@fun2_3,x0)
[x,fmin] = fminunc(@fun2_3,x0)
程序输出:
可见,两种方法的求解结果基本相同。
这篇关于【Python】【matLab】模拟退火算法求二元高次函数最小值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!