elasticsearch__3__java操作之Facets 数据分组统计处理

2024-06-03 13:58

本文主要是介绍elasticsearch__3__java操作之Facets 数据分组统计处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



elasticsearch 分布式搜索系列专栏:http://blog.csdn.net/xiaohulunb/article/category/2399789

内容涉及代码GitHub地址: 点击打开链接



官方API:http://www.elasticsearch.org/guide/en/elasticsearch/client/java-api/current/java-facets.html


package com.framework_technology.elasticsearch;import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.common.unit.DistanceUnit;
import org.elasticsearch.index.query.FilterBuilders;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.facet.FacetBuilder;
import org.elasticsearch.search.facet.FacetBuilders;
import org.elasticsearch.search.facet.Facets;
import org.elasticsearch.search.facet.datehistogram.DateHistogramFacet;
import org.elasticsearch.search.facet.datehistogram.DateHistogramFacetBuilder;
import org.elasticsearch.search.facet.filter.FilterFacet;
import org.elasticsearch.search.facet.filter.FilterFacetBuilder;
import org.elasticsearch.search.facet.geodistance.GeoDistanceFacet;
import org.elasticsearch.search.facet.geodistance.GeoDistanceFacetBuilder;
import org.elasticsearch.search.facet.histogram.HistogramFacet;
import org.elasticsearch.search.facet.histogram.HistogramFacetBuilder;
import org.elasticsearch.search.facet.query.QueryFacet;
import org.elasticsearch.search.facet.query.QueryFacetBuilder;
import org.elasticsearch.search.facet.range.RangeFacet;
import org.elasticsearch.search.facet.range.RangeFacetBuilder;
import org.elasticsearch.search.facet.statistical.StatisticalFacet;
import org.elasticsearch.search.facet.statistical.StatisticalFacetBuilder;
import org.elasticsearch.search.facet.terms.TermsFacet;
import org.elasticsearch.search.facet.terms.TermsFacetBuilder;
import org.elasticsearch.search.facet.termsstats.TermsStatsFacet;
import org.elasticsearch.search.facet.termsstats.TermsStatsFacetBuilder;import java.util.Map;
import java.util.concurrent.TimeUnit;/*** Created by lw on 14-7-15.* <p>* 搜索 Facets分组统计* <p>* <a>http://www.elasticsearch.org/guide/en/elasticsearch/client/java-api/current/java-facets.html</a>* http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-facets.html*/
public class Es_Facets {/*** termsFacet* 字段分组-Count 出现次数统计*/private static void termsFacet() {TermsFacetBuilder termsFacetBuilder = FacetBuilders.termsFacet("TermsFacetBuilder").field("name").size(Integer.MAX_VALUE);//取得 name分组后COUNT值,显示size值TermsFacet termsFacet = (TermsFacet) searchByQuery_Facets(termsFacetBuilder).get("TermsFacetBuilder");System.out.println("termsFacet.getTotalCount():" + termsFacet.getTotalCount());// Total terms doc countSystem.out.println("termsFacet.getOtherCount():" + termsFacet.getOtherCount());// Not shown terms doc countSystem.out.println("termsFacet.getMissingCount():" + termsFacet.getMissingCount());// Without term doc countfor (TermsFacet.Entry entry : termsFacet) {// Term -》Doc countSystem.out.println("key :" + entry.getTerm() + "\t value:" + entry.getCount());}}/*** termsStatsFacet* <p>* 统计 key 下面的 value 的值 (Max/Min,Count)* 以 key 分组* 对 value 求一些函数*/private static void termsStatsFacet() {TermsStatsFacetBuilder termsStatsFacetBuilder = FacetBuilders.termsStatsFacet("TermsStatsFacetBuilder").keyField("").valueField("");TermsStatsFacet entries = (TermsStatsFacet) searchByQuery_Facets(termsStatsFacetBuilder).get("TermsStatsFacetBuilder");System.out.println("Without term doc count -> " + entries.getMissingCount());// For each entryfor (TermsStatsFacet.Entry entry : entries) {entry.getTerm();            // Termentry.getCount();           // Doc countentry.getMin();             // Min valueentry.getMax();             // Max valueentry.getMean();            // Meanentry.getTotal();           // Sum of valuesSystem.out.println(entry);}}/*** rangeFacet* 分组范围性统计*/private static void rangeFacet() {/*** 20-30* 10-∞* -∞-20* 三个范围做统计*/RangeFacetBuilder rangeFacetBuilder = FacetBuilders.rangeFacet("RangeFacetBuilder").field("age").addRange(20, 30).addUnboundedFrom(10).addUnboundedTo(20);RangeFacet rangeFacet = (RangeFacet) searchByQuery_Facets(rangeFacetBuilder).get("RangeFacetBuilder");for (RangeFacet.Entry entry : rangeFacet) {// sr is here your SearchResponse objectentry.getFrom();    // Range from requestedentry.getTo();      // Range to requestedentry.getCount();   // Doc countentry.getMin();     // Min valueentry.getMax();     // Max valueentry.getMean();    // Meanentry.getTotal();   // Sum of valuesSystem.out.println(entry.toString());}}/*** histogramFacet* 直方图统计- 按照时间间隔*/private static void histogramFacet() {HistogramFacetBuilder histogramFacetBuilder = FacetBuilders.histogramFacet("HistogramFacetBuilder").field("birthday") //生日分组统计.interval(1, TimeUnit.MINUTES); //按分钟数分组HistogramFacet histogramFacet = (HistogramFacet) searchByQuery_Facets(histogramFacetBuilder).get("HistogramFacetBuilder");// For each entry -Key (X-Axis) -Doc count (Y-Axis)for (HistogramFacet.Entry entry : histogramFacet) {System.out.println("entry.getKey()->" + entry.getKey() + "\t entry.getCount()->" + entry.getCount());}}/*** dateHistogramFacet* 数据直方图统计- 按照时间间隔*/private static void dateHistogramFacet() {DateHistogramFacetBuilder dateHistogramFacetBuilder = FacetBuilders.dateHistogramFacet("DateHistogramFacetBuilder").field("birthday")// Your date field.interval("minute");// You can also use "quarter", "month", "week", "day",// "hour" and "minute" or notation like "1.5h" or "2w"DateHistogramFacet histogramFacet= (DateHistogramFacet) searchByQuery_Facets(dateHistogramFacetBuilder).get("DateHistogramFacetBuilder");for (DateHistogramFacet.Entry entry : histogramFacet) {entry.getTime();    // Date in ms since epoch (X-Axis)entry.getCount();   // Doc count (Y-Axis)}}/*** filterFacet* 过滤条件后统计*/private static void filterFacet() {FilterFacetBuilder filterFacetBuilder = FacetBuilders.filterFacet("FilterFacetBuilder",FilterBuilders.termFilter("name", "葫芦747娃"));    // 返回命中“指定filter”的结果数。FilterFacet filterFacet = (FilterFacet) searchByQuery_Facets(filterFacetBuilder).get("FilterFacetBuilder");System.out.println("filterFacet.getCount()->" + filterFacet.getCount());// Number of docs that matched}/*** queryFacet* 过滤条件后统计*/private static void queryFacet() {//Query 条件过滤后统计QueryFacetBuilder queryFacetBuilder = FacetBuilders.queryFacet("QueryFacetBuilder",QueryBuilders.matchQuery("age", 29));QueryFacet queryFacet = (QueryFacet) searchByQuery_Facets(queryFacetBuilder).get("QueryFacetBuilder");System.out.println("queryFacet.getCount()->" + queryFacet.getCount());// Number of docs that matched}/*** statisticalFacet* 数学统计 - StatisticalFacet需要作用在数值型字段上面,他会统计总数、总和、最值、均值等*/private static void statisticalFacet() {StatisticalFacetBuilder statisticalFacetBuilder = FacetBuilders.statisticalFacet("StatisticalFacetBuilder").field("height");StatisticalFacet statisticalFacet =(StatisticalFacet) searchByQuery_Facets(statisticalFacetBuilder).get("StatisticalFacetBuilder");statisticalFacet.getCount();           // Doc countstatisticalFacet.getMin();             // Min valuestatisticalFacet.getMax();             // Max valuestatisticalFacet.getMean();            // MeanstatisticalFacet.getTotal();           // Sum of valuesstatisticalFacet.getStdDeviation();    // Standard DeviationstatisticalFacet.getSumOfSquares();    // Sum of SquaresstatisticalFacet.getVariance();        // Variance}/*** geoDistanceFacet* 数学统计 - StatisticalFacet需要作用在数值型字段上面,他会统计总数、总和、最值、均值等*/private static void geoDistanceFacet() {GeoDistanceFacetBuilder geoDistanceFacetBuilder = FacetBuilders.geoDistanceFacet("GeoDistanceFacetBuilder").field("location")                   // Field containing coordinates we want to compare with.point(40, -70)                     // Point from where we start (0).addUnboundedFrom(10)               // 0 to 10 km (excluded).addRange(10, 20)                   // 10 to 20 km (excluded).addRange(20, 100)                  // 20 to 100 km (excluded).addUnboundedTo(100)                // from 100 km to infinity (and beyond ;-) ).unit(DistanceUnit.DEFAULT);        // All distances are in kilometers. Can be MILESGeoDistanceFacet geoDistanceFacet =(GeoDistanceFacet) searchByQuery_Facets(geoDistanceFacetBuilder).get("GeoDistanceFacetBuilder");// For each entryfor (GeoDistanceFacet.Entry entry : geoDistanceFacet) {entry.getFrom();            // Distance from requestedentry.getTo();              // Distance to requestedentry.getCount();           // Doc countentry.getMin();             // Min valueentry.getMax();             // Max valueentry.getTotal();           // Sum of valuesentry.getMean();            // Mean}}/*** 搜索,Query搜索API* Facets 查询-对搜索结果进行计算处理API*/private static Map searchByQuery_Facets(FacetBuilder facetBuilder) {SearchResponse response = Es_Utils.client.prepareSearch(Es_Utils.INDEX_DEMO_01).setTypes(Es_Utils.INDEX_DEMO_01_MAPPING).setQuery(QueryBuilders.termQuery("age", 29))//.setPostFilter(FilterBuilders.rangeFilter("age").gt(98)).addFacet(facetBuilder).setSize(1000).execute().actionGet();//Es_Utils.writeSearchResponse(response);Facets facets = response.getFacets();return facets.getFacets();}public static void main(String[] args) {Es_Utils.startupClient();dateHistogramFacet();}
}



这篇关于elasticsearch__3__java操作之Facets 数据分组统计处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027185

相关文章

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

浅析Java中如何优雅地处理null值

《浅析Java中如何优雅地处理null值》这篇文章主要为大家详细介绍了如何结合Lambda表达式和Optional,让Java更优雅地处理null值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录场景 1:不为 null 则执行场景 2:不为 null 则返回,为 null 则返回特定值或抛出异常场景

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn

通过Spring层面进行事务回滚的实现

《通过Spring层面进行事务回滚的实现》本文主要介绍了通过Spring层面进行事务回滚的实现,包括声明式事务和编程式事务,具有一定的参考价值,感兴趣的可以了解一下... 目录声明式事务回滚:1. 基础注解配置2. 指定回滚异常类型3. ​不回滚特殊场景编程式事务回滚:1. ​使用 TransactionT