TensorBoard在pytorch训练过程中如何使用,及数据读取问题解决方法

本文主要是介绍TensorBoard在pytorch训练过程中如何使用,及数据读取问题解决方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TensorBoard

    • 模块导入
    • 日志记录文件的创建
    • 训练中如何写入数据
    • 如何提取保存的数据调用TensorBoard面板
    • 可能会遇到的问题

模块导入

首先从torch中导入tensorboard的SummaryWriter日志记录模块

from torch.utils.tensorboard import SummaryWriter

然后导入要用到的os库,当然你们也要导入自己模型训练需要用到的库

import os

日志记录文件的创建

import oslog_dir = 'runs/EfficientNet_B3_experiment2'# 检查目录是否存在
if os.path.exists(log_dir):# 如果目录存在,获取目录下的所有文件和子目录列表files = os.listdir(log_dir)# 遍历目录下的文件和子目录for file in files:# 拼接文件的完整路径file_path = os.path.join(log_dir, file)# 判断是否为文件if os.path.isfile(file_path):# 如果是文件,删除该文件os.remove(file_path)elif os.path.isdir(file_path):# 如果是目录,递归地删除目录及其下的所有文件和子目录for root, dirs, files in os.walk(file_path, topdown=False):for name in files:os.remove(os.path.join(root, name))for name in dirs:os.rmdir(os.path.join(root, name))os.rmdir(file_path)# 创建新的SummaryWriter
writer = SummaryWriter(log_dir)

这个代码会自动创建并更新日志文件目录,请谨慎使用,记得改
log_dir = 'runs/EfficientNet_B3_experiment2'路径名字小心把之前保存好的数据删除了
之后模型训练的数据将会写入到log_dir这个路径文件中,在由TensorBoard张量板调用显示数据

训练中如何写入数据

for epoch in range(num_epochs):model.train()running_loss = 0.0correct = 0total = 0start_time = time.time()for images, labels in train_loader:images, labels = images.to(device), labels.to(device)optimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()# 记录学习率current_lr = optimizer.param_groups[0]['lr']writer.add_scalar('Learning Rate', current_lr, epoch)# 记录梯度范数total_norm = 0for p in model.parameters():param_norm = p.grad.data.norm(2)total_norm += param_norm.item() ** 2total_norm = total_norm ** 0.5writer.add_scalar('Gradient Norm', total_norm, epoch)running_loss += loss.item()_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()train_loss = running_loss / len(train_loader)train_accuracy = 100 * correct / total# 记录训练损失和准确率writer.add_scalar('Training Loss', train_loss, epoch)writer.add_scalar('Training Accuracy', train_accuracy, epoch)# 记录模型参数的直方图for name, param in model.named_parameters():writer.add_histogram(name, param, epoch)# 记录网络结构(通常只需要记录一次)if epoch == 0:writer.add_graph(model, images.to(device))# 记录输入图片img_grid = torchvision.utils.make_grid(images)writer.add_image('train_images', img_grid, epoch)# 使用matplotlib记录渲染的图片fig, ax = plt.subplots()ax.plot(np.arange(len(labels)), labels.cpu().numpy(), 'b', label='True')ax.plot(np.arange(len(predicted)), predicted.cpu().numpy(), 'r', label='Predicted')ax.legend()writer.add_figure('predictions vs. actuals', fig, epoch)# 验证模型model.eval()val_loss = 0.0correct = 0total = 0all_preds = []all_labels = []with torch.no_grad():for images, labels in test_loader:images, labels = images.to(device), labels.to(device)outputs = model(images)loss = criterion(outputs, labels)val_loss += loss.item()_, predicted = torch.max(outputs.data, 1)all_preds.extend(predicted.cpu().numpy())all_labels.extend(labels.cpu().numpy())total += labels.size(0)correct += (predicted == labels).sum().item()val_loss /= len(test_loader)val_accuracy = 100 * correct / totalif val_accuracy > best_val_accuracy:# 当新的最佳验证准确率出现时,保存模型状态字典best_val_accuracy = val_accuracybest_model_state_dict = model.state_dict()# 记录验证损失和准确率writer.add_scalar('Validation Loss', val_loss, epoch)writer.add_scalar('Validation Accuracy', val_accuracy, epoch)# 记录多条曲线writer.add_scalars('Loss', {'train': train_loss, 'val': val_loss}, epoch)writer.add_scalars('Accuracy', {'train': train_accuracy, 'val': val_accuracy}, epoch)# 打印每个epoch的训练和验证结果print(f'Epoch [{epoch+1}/{num_epochs}], 'f'Train Loss: {train_loss:.4f}, Train Accuracy: {train_accuracy:.2f}%, 'f'Validation Loss: {val_loss:.4f}, Validation Accuracy: {val_accuracy:.2f}%, 'f'Time: {time.time() - start_time:.2f}s')

以上代码分别记录了
在这里插入图片描述
在这里插入图片描述

如何提取保存的数据调用TensorBoard面板

在终端输入以下代码

tensorboard --logdir='修改为自己的log_dir路径'

在这里插入图片描述
然后点击 http://localhost:6006/就可以成功加载面板了
在这里插入图片描述

可能会遇到的问题

如果数据读取失败那么请检查数据路径是否正确
注意数据文件中不能有任何中文

这篇关于TensorBoard在pytorch训练过程中如何使用,及数据读取问题解决方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026870

相关文章

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件