搭建大型分布式服务(三十八)SpringBoot 整合多个kafka数据源-支持protobuf

本文主要是介绍搭建大型分布式服务(三十八)SpringBoot 整合多个kafka数据源-支持protobuf,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录


文章目录

  • 系列文章目录
  • 前言
      • 一、本文要点
      • 二、开发环境
      • 三、原项目
      • 四、修改项目
      • 五、测试一下
      • 五、小结


前言

本插件稳定运行上百个kafka项目,每天处理上亿级的数据的精简小插件,快速上手。

<dependency><groupId>io.github.vipjoey</groupId><artifactId>multi-kafka-consumer-starter</artifactId><version>最新版本号</version>
</dependency>

例如下面这样简单的配置就完成SpringBoot和kafka的整合,我们只需要关心com.mmc.multi.kafka.starter.OneProcessorcom.mmc.multi.kafka.starter.TwoProcessor 这两个Service的代码开发。

## topic1的kafka配置
spring.kafka.one.enabled=true
spring.kafka.one.consumer.bootstrapServers=${spring.embedded.kafka.brokers}
spring.kafka.one.topic=mmc-topic-one
spring.kafka.one.group-id=group-consumer-one
spring.kafka.one.processor=com.mmc.multi.kafka.starter.OneProcessor // 业务处理类名称
spring.kafka.one.consumer.auto-offset-reset=latest
spring.kafka.one.consumer.max-poll-records=10
spring.kafka.one.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.one.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer## topic2的kafka配置
spring.kafka.two.enabled=true
spring.kafka.two.consumer.bootstrapServers=${spring.embedded.kafka.brokers}
spring.kafka.two.topic=mmc-topic-two
spring.kafka.two.group-id=group-consumer-two
spring.kafka.two.processor=com.mmc.multi.kafka.starter.TwoProcessor // 业务处理类名称
spring.kafka.two.consumer.auto-offset-reset=latest
spring.kafka.two.consumer.max-poll-records=10
spring.kafka.two.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.two.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer## pb 消息消费者
spring.kafka.pb.enabled=true
spring.kafka.pb.consumer.bootstrapServers=${spring.embedded.kafka.brokers}
spring.kafka.pb.topic=mmc-topic-pb
spring.kafka.pb.group-id=group-consumer-pb
spring.kafka.pb.processor=pbProcessor
spring.kafka.pb.consumer.auto-offset-reset=latest
spring.kafka.pb.consumer.max-poll-records=10
spring.kafka.pb.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.pb.consumer.value-deserializer=org.apache.kafka.common.serialization.ByteArrayDeserializer

国籍惯例,先上源码:Github源码

一、本文要点

本文将介绍通过封装一个starter,来实现多kafka数据源的配置,通过通过源码,可以学习以下特性。系列文章完整目录

  • SpringBoot 整合多个kafka数据源
  • SpringBoot 批量消费kafka消息
  • SpringBoot 优雅地启动或停止消费kafka
  • SpringBoot kafka本地单元测试(免集群)
  • SpringBoot 利用map注入多份配置
  • SpringBoot BeanPostProcessor 后置处理器使用方式
  • SpringBoot 将自定义类注册到IOC容器
  • SpringBoot 注入bean到自定义类成员变量
  • Springboot 取消限定符
  • Springboot 支持消费protobuf类型的kafka消息

二、开发环境

  • jdk 1.8
  • maven 3.6.2
  • springboot 2.4.3
  • kafka-client 2.6.6
  • idea 2020

三、原项目

1、接前文,我们开发了一个kafka插件,但在使用过程中发现有些不方便的地方,在公共接口MmcKafkaStringInputer 显示地继承了BatchMessageListener<String, String>,导致我们没办法去指定消费protobuf类型的message。

public interface MmcKafkaStringInputer extends MmcInputer, BatchMessageListener<String, String> {}/*** 消费kafka消息.*/@Overridepublic void onMessage(List<ConsumerRecord<String, String>> records) {if (null == records || CollectionUtils.isEmpty(records)) {log.warn("{} records is null or records.value is empty.", name);return;}Assert.hasText(name, "You must pass the field `name` to the Constructor or invoke the setName() after the class was created.");Assert.notNull(properties, "You must pass the field `properties` to the Constructor or invoke the setProperties() after the class was created.");try {Stream<T> dataStream = records.stream().map(ConsumerRecord::value).flatMap(this::doParse).filter(Objects::nonNull).filter(this::isRightRecord);// 支持配置强制去重或实现了接口能力去重if (properties.isDuplicate() || isSubtypeOfInterface(MmcKafkaMsg.class)) {// 检查是否实现了去重接口if (!isSubtypeOfInterface(MmcKafkaMsg.class)) {throw new RuntimeException("The interface "+ MmcKafkaMsg.class.getName() + " is not implemented if you set the config `spring.kafka.xxx.duplicate=true` .");}dataStream = dataStream.collect(Collectors.groupingBy(this::buildRoutekey)).entrySet().stream().map(this::findLasted).filter(Objects::nonNull);}List<T> datas = dataStream.collect(Collectors.toList());if (CommonUtil.isNotEmpty(datas)) {this.dealMessage(datas);}} catch (Exception e) {log.error(name + "-dealMessage error ", e);}}

2、由于实现了BatchMessageListener<String, String>接口,抽象父类必须实现onMessage(List<ConsumerRecord<String, String>> records)方法,这样会导致子类局限性很大,没办法去实现其它kafka的xxxListener接口,例如手工提交offset,单条消息消费等。

因此、所以我们要升级和优化。

四、修改项目

1、新增KafkaAbastrctProcessor抽象父类,直接实现MmcInputer接口,要求所有子类都需要继承本类,子类通过调用{@link #receiveMessage(List)} 模板方法来实现通用功能;

@Slf4j
@Setter
abstract class KafkaAbstractProcessor<T> implements MmcInputer {// 类的内容基本和MmcKafkaKafkaAbastrctProcessor保持一致// 主要修改了doParse方法,目的是让子类可以自定义解析protobuf/*** 将kafka消息解析为实体,支持json对象或者json数组.** @param msg kafka消息* @return 实体类*/protected Stream<T> doParse(ConsumerRecord<String, Object> msg) {// 消息对象Object record = msg.value();// 如果是pb格式if (record instanceof byte[]) {return doParseProtobuf((byte[]) record);} else if (record instanceof String) {// 普通kafka消息String json = record.toString();if (json.startsWith("[")) {// 数组List<T> datas = doParseJsonArray(json);if (CommonUtil.isEmpty(datas)) {log.warn("{} doParse error, json={} is error.", name, json);return Stream.empty();}// 反序列对象后,做一些初始化操作datas = datas.stream().peek(this::doAfterParse).collect(Collectors.toList());return datas.stream();} else {// 对象T data = doParseJsonObject(json);if (null == data) {log.warn("{} doParse error, json={} is error.", name, json);return Stream.empty();}// 反序列对象后,做一些初始化操作doAfterParse(data);return Stream.of(data);}} else if (record instanceof MmcKafkaMsg) {// 如果本身就是PandoKafkaMsg对象,直接返回//noinspection uncheckedreturn Stream.of((T) record);} else {throw new UnsupportedForMessageFormatException("not support message type");}}/*** 将json消息解析为实体.** @param json kafka消息* @return 实体类*/protected T doParseJsonObject(String json) {if (properties.isSnakeCase()) {return JsonUtil.parseSnackJson(json, getEntityClass());} else {return JsonUtil.parseJsonObject(json, getEntityClass());}}/*** 将json消息解析为数组.** @param json kafka消息* @return 数组*/protected List<T> doParseJsonArray(String json) {if (properties.isSnakeCase()) {try {return JsonUtil.parseSnackJsonArray(json, getEntityClass());} catch (Exception e) {throw new RuntimeException(e);}} else {return JsonUtil.parseJsonArray(json, getEntityClass());}}/*** 序列化为pb格式,假设你消费的是pb消息,需要自行实现这个类.** @param record pb字节数组* @return pb实体类流*/protected Stream<T> doParseProtobuf(byte[] record) {throw new NotImplementedException();}
}

2、修改MmcKafkaBeanPostProcessor类,暂存KafkaAbastrctProcessor的子类。

public class MmcKafkaBeanPostProcessor implements BeanPostProcessor {@Getterprivate final Map<String, KafkaAbstractProcessor<?>> suitableClass = new ConcurrentHashMap<>();@Overridepublic Object postProcessAfterInitialization(Object bean, String beanName) throws BeansException {if (bean instanceof KafkaAbstractProcessor) {KafkaAbstractProcessor<?> target = (KafkaAbstractProcessor<?>) bean;suitableClass.putIfAbsent(beanName, target);suitableClass.putIfAbsent(bean.getClass().getName(), target);}return bean;}
}

3、修改MmcKafkaProcessorFactory,更换构造的目标类为KafkaAbstractProcessor

public class MmcKafkaProcessorFactory {@Resourceprivate DefaultListableBeanFactory defaultListableBeanFactory;public KafkaAbstractProcessor<? > buildInputer(String name, MmcMultiKafkaProperties.MmcKafkaProperties properties,Map<String, KafkaAbstractProcessor<? >> suitableClass) throws Exception {// 如果没有配置process,则直接从注册的Bean里查找if (!StringUtils.hasText(properties.getProcessor())) {return findProcessorByName(name, properties.getProcessor(), suitableClass);}// 如果配置了process,则从指定配置中生成实例// 判断给定的配置是类,还是bean名称if (!isClassName(properties.getProcessor())) {throw new IllegalArgumentException("It's not a class, wrong value of ${spring.kafka." + name + ".processor}.");}// 如果ioc容器已经存在该处理实例,则直接使用,避免既配置了process,又使用了@Service等注解KafkaAbstractProcessor<? > inc = findProcessorByClass(name, properties.getProcessor(), suitableClass);if (null != inc) {return inc;}// 指定的processor处理类必须继承KafkaAbstractProcessorClass<?> clazz = Class.forName(properties.getProcessor());boolean isSubclass = KafkaAbstractProcessor.class.isAssignableFrom(clazz);if (!isSubclass) {throw new IllegalStateException(clazz.getName() + " is not subClass of KafkaAbstractProcessor.");}// 创建实例Constructor<?> constructor = clazz.getConstructor();KafkaAbstractProcessor<? > ins = (KafkaAbstractProcessor<? >) constructor.newInstance();// 注入依赖的变量defaultListableBeanFactory.autowireBean(ins);return ins;}private KafkaAbstractProcessor<? > findProcessorByName(String name, String processor, Map<String,KafkaAbstractProcessor<? >> suitableClass) {return suitableClass.entrySet().stream().filter(e -> e.getKey().startsWith(name) || e.getKey().equalsIgnoreCase(processor)).map(Map.Entry::getValue).findFirst().orElseThrow(() -> new RuntimeException("Can't found any suitable processor class for the consumer which name is " + name+ ", please use the config ${spring.kafka." + name + ".processor} or set name of Bean like @Service(\"" + name + "Processor\") "));}private KafkaAbstractProcessor<? > findProcessorByClass(String name, String processor, Map<String,KafkaAbstractProcessor<? >> suitableClass) {return suitableClass.entrySet().stream().filter(e -> e.getKey().startsWith(name) || e.getKey().equalsIgnoreCase(processor)).map(Map.Entry::getValue).findFirst().orElse(null);}private boolean isClassName(String processor) {// 使用正则表达式验证类名格式String regex = "^[a-zA-Z_$][a-zA-Z\\d_$]*([.][a-zA-Z_$][a-zA-Z\\d_$]*)*$";return Pattern.matches(regex, processor);}}

4、修改MmcMultiConsumerAutoConfiguration,更换构造的目标类的父类为KafkaAbstractProcessor

 @Beanpublic MmcKafkaInputerContainer mmcKafkaInputerContainer(MmcKafkaProcessorFactory factory,MmcKafkaBeanPostProcessor beanPostProcessor) throws Exception {Map<String, MmcInputer> inputers = new HashMap<>();Map<String, MmcMultiKafkaProperties.MmcKafkaProperties> kafkas = mmcMultiKafkaProperties.getKafka();// 逐个遍历,并生成consumerfor (Map.Entry<String, MmcMultiKafkaProperties.MmcKafkaProperties> entry : kafkas.entrySet()) {// 唯一消费者名称String name = entry.getKey();// 消费者配置MmcMultiKafkaProperties.MmcKafkaProperties properties = entry.getValue();// 是否开启if (properties.isEnabled()) {// 生成消费者KafkaAbstractProcessor inputer = factory.buildInputer(name, properties, beanPostProcessor.getSuitableClass());// 输入源容器ConcurrentMessageListenerContainer<Object, Object> container = concurrentMessageListenerContainer(properties);// 设置容器inputer.setContainer(container);inputer.setName(name);inputer.setProperties(properties);// 设置消费者container.setupMessageListener(inputer);// 关闭时候停止消费Runtime.getRuntime().addShutdownHook(new Thread(inputer::stop));// 直接启动container.start();// 加入集合inputers.put(name, inputer);}}return new MmcKafkaInputerContainer(inputers);}

5、修改MmcKafkaKafkaAbastrctProcessor,用于实现kafka的BatchMessageListener 接口,当然你也可以实现其它Listener接口,或者在这基础上扩展。

public abstract class MmcKafkaKafkaAbastrctProcessor<T> extends KafkaAbstractProcessor<T> implements BatchMessageListener<String, Object> {@Overridepublic void onMessage(List<ConsumerRecord<String, Object>> records) {if (null == records || CollectionUtils.isEmpty(records)) {log.warn("{} records is null or records.value is empty.", name);return;}receiveMessage(records);}
}

五、测试一下

1、引入kafka测试需要的jar。参考文章:kafka单元测试

        <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency><dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka-test</artifactId><scope>test</scope></dependency><dependency><groupId>com.google.protobuf</groupId><artifactId>protobuf-java</artifactId><version>3.18.0</version><scope>test</scope></dependency><dependency><groupId>com.google.protobuf</groupId><artifactId>protobuf-java-util</artifactId><version>3.18.0</version><scope>test</scope></dependency>

2、定义一个pb类型消息和业务处理类。

(1) 定义pb,然后通过命令生成对应的实体类;

syntax = "proto2";package  com.mmc.multi.kafka;option java_package = "com.mmc.multi.kafka.starter.proto";
option java_outer_classname = "DemoPb";message PbMsg {optional string routekey = 1;optional string cosImgUrl = 2;optional string base64str = 3;}

(2)创建PbProcessor消息处理类,用于消费protobuf类型的消息;

@Slf4j
@Service("pbProcessor")
public class PbProcessor extends MmcKafkaKafkaAbastrctProcessor<DemoMsg> {@Overrideprotected Stream<DemoMsg> doParseProtobuf(byte[] record) {try {DemoPb.PbMsg msg = DemoPb.PbMsg.parseFrom(record);DemoMsg demo = new DemoMsg();BeanUtils.copyProperties(msg, demo);return Stream.of(demo);} catch (InvalidProtocolBufferException e) {log.error("parssPbError", e);return Stream.empty();}}@Overrideprotected void dealMessage(List<DemoMsg> datas) {System.out.println("PBdatas: " + datas);}
}

3、配置kafka地址和指定业务处理类。

## pb 消息消费者
spring.kafka.pb.enabled=true
spring.kafka.pb.consumer.bootstrapServers=${spring.embedded.kafka.brokers}
spring.kafka.pb.topic=mmc-topic-pb
spring.kafka.pb.group-id=group-consumer-pb
spring.kafka.pb.processor=pbProcessor
spring.kafka.pb.consumer.auto-offset-reset=latest
spring.kafka.pb.consumer.max-poll-records=10
spring.kafka.pb.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.pb.consumer.value-deserializer=org.apache.kafka.common.serialization.ByteArrayDeserializer

4、编写测试类。

@Slf4j
@ActiveProfiles("dev")
@ExtendWith(SpringExtension.class)
@SpringBootTest(classes = {MmcMultiConsumerAutoConfiguration.class, DemoService.class, PbProcessor.class})
@TestPropertySource(value = "classpath:application-pb.properties")
@DirtiesContext
@EmbeddedKafka(partitions = 1, brokerProperties = {"listeners=PLAINTEXT://localhost:9092", "port=9092"},topics = {"${spring.kafka.pb.topic}"})
class KafkaPbMessageTest {@Resourceprivate EmbeddedKafkaBroker embeddedKafkaBroker;@Value("${spring.kafka.pb.topic}")private String topicPb;@Testvoid testDealMessage() throws Exception {Thread.sleep(2 * 1000);// 模拟生产数据produceMessage();Thread.sleep(10 * 1000);}void produceMessage() {Map<String, Object> configs = new HashMap<>(KafkaTestUtils.producerProps(embeddedKafkaBroker));Producer<String, byte[]> producer = new DefaultKafkaProducerFactory<>(configs, new StringSerializer(), new ByteArraySerializer()).createProducer();for (int i = 0; i < 10; i++) {DemoPb.PbMsg msg = DemoPb.PbMsg.newBuilder().setCosImgUrl("http://google.com").setRoutekey("routekey-" + i).build();producer.send(new ProducerRecord<>(topicPb, "my-aggregate-id", msg.toByteArray()));producer.flush();}}
}

5、运行一下,测试通过。
在这里插入图片描述

五、小结

将本项目代码构建成starter,就可以大大提升我们开发效率,我们只需要关心业务代码的开发,github项目源码:轻触这里。如果对你有用可以打个星星哦。下一篇,升级本starter,在kafka单分区下实现十万级消费处理速度。

《搭建大型分布式服务(三十六)SpringBoot 零代码方式整合多个kafka数据源》
《搭建大型分布式服务(三十七)SpringBoot 整合多个kafka数据源-取消限定符》
《搭建大型分布式服务(三十八)SpringBoot 整合多个kafka数据源-支持protobuf》
《搭建大型分布式服务(三十九)SpringBoot 整合多个kafka数据源-支持Aware模式》

加我加群一起交流学习!更多干货下载、项目源码和大厂内推等着你

这篇关于搭建大型分布式服务(三十八)SpringBoot 整合多个kafka数据源-支持protobuf的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026074

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud