Python | 自动探索性数据分析(EDA)库SweetViz

2024-06-03 04:20

本文主要是介绍Python | 自动探索性数据分析(EDA)库SweetViz,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SweetViz是一个开放源代码Python库,主要用于生成精美的高密度可视化文件,启动探索性数据分析(EDA),输出为完全独立的HTML应用程序。

探索性数据分析(EDA)是分析和总结数据集主要特征的过程,通常旨在了解数据中的潜在模式,关系和趋势。

SweetViz库的特点

主要包括以下几个方面:

  • 快速生成可视化图表:通过仅两行代码或更少,SweetViz可以快速生成美观且高密度的可视化图表,便于进行探索性数据分析(EDA)。
  • 目标值分析:帮助用户分析目标特征,例如如何将目标值(布尔值或数字值)与其他特征关联起来。
  • 可视化和比较数据集:支持对不同的数据集(例如训练与测试数据)进行可视化及比较分析,也可以对同个数据集的不同类别进行比较。
  • 混合型关联分析:无缝集成了数字(皮尔森相关性)、分类(不确定性系数)和分类数字(相关性)数据类型的关联,以提供所有数据类型的最大信息。
  • 独立HTML应用程序:SweetViz的输出是一个完全独立的HTML应用程序,用户可以轻松地分享和查看生成的图表和报告。

总的来说,SweetViz库旨在为用户提供一种快速、简便的方法来进行数据分析和可视化,帮助用户更好地理解数据和特征之间的关系。

安装

首先,我们将使用下面给出的pip install命令安装SweetViz库:

pip install sweetviz

导入必要的库

# import the required libraries 
import pandas as pd
import sweetviz as sv
from sklearn.model_selection import train_test_splitprint("SweetViz Version : {}".format(sv.__version__))

输出

SweetViz Version : 2.3.1

加载数据集

df = pd.read_csv('california_housing.csv')
df.info()

输出

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 9 columns):#   Column              Non-Null Count  Dtype  
---  ------              --------------  -----  0   longitude           3000 non-null   float641   latitude            3000 non-null   float642   housing_median_age  3000 non-null   float643   total_rooms         3000 non-null   float644   total_bedrooms      3000 non-null   float645   population          3000 non-null   float646   households          3000 non-null   float647   median_income       3000 non-null   float648   median_house_value  3000 non-null   float64
dtypes: float64(9)
memory usage: 211.1 KB

生成分析报告

为了生成报告,我们有3个函数:

  • analyze() 用于单个数据集
  • compare() 用于比较2个数据集(例如,Test与Train)
  • compare_intra() 用于比较一个数据集中某个选项的数据集的不同

这里,我们有一个单一的数据集,所以在这个时候我们将使用analyze()函数;

report = sv.analyze([df, 'Train'], target_feat='median_house_value')

一旦我们创建了我们的报告对象,然后简单地将其传递给两个’show’函数之一:
show_html()或show_ notebook()
show_html()函数将在给定的文件路径下创建并保存一个HTML报告(HTML页面),
show_notebook()函数将报表嵌入到Notebook中。

# show the report in a form of an HTML file
report.show_html('Report.html')

在这里插入图片描述

比较训练和测试数据集

# Split the dataset 
train_df, test_df = train_test_split(df, train_size=0.75)
# compare the dataset
compare = sv.compare(source=train_df, compare=test_df, target_feat="median_house_value")# Show the result
compare.show_html('Compare.html')

在这里插入图片描述
将鼠标悬停在报告左侧导航栏中的“Associations”按钮上,将在报告左侧显示关联图。关联图显示数据集中所有特征对之间的成对关系,每个点表示两个特征的唯一组合。点的大小和颜色表示两个特征之间关联的强度和方向,较大和较暗的点表示较强的正关联,较小和较亮的点表示较弱或负关联。

在这里插入图片描述
比较一个数据集中两个不同子群

# import the necessary libraries
import sweetviz as sv
from sklearn.datasets import load_breast_cancer# Load the dataset
cancer = load_breast_cancer(as_frame=True)
# dataframe
df = cancer.frame# Define the FeatureConfig object to force 
# the target feature to be numerical
my_feature_config = sv.FeatureConfig(force_num=['target'])# Create a boolean array to use as the grouping condition
condition_series = df['target'] == 0# Analyze the dataset with the specified FeatureConfig object 
# and grouping condition
my_report = sv.compare_intra(df, condition_series, ['malignant', 'benign'], feat_cfg=my_feature_config, target_feat='target')# Generate and display the report
my_report.show_html()

在这里插入图片描述

这篇关于Python | 自动探索性数据分析(EDA)库SweetViz的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025996

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar