[学习笔记](b站视频)PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】(ing)

本文主要是介绍[学习笔记](b站视频)PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】(ing),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

视频来源:PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】

前面P1-P5属于环境安装,略过。

5-6.Pytorch加载数据初认识

数据文件: hymenoptera_data

# read_data.py文件from torch.utils.data import Dataset
from PIL import Image
import osclass MyData(Dataset):def __init__(self, root_dir, label_dir):self.root_dir = root_dirself.label_dir = label_dirself.path = os.path.join(self.root_dir, self.label_dir)self.img_path = os.listdir(self.path)def __getitem__(self, idx):img_name = self.img_path[idx]img_item_path = os.path.join(self.root_dir, self.label_dir, img_name)img = Image.open(img_item_path)label = self.label_dirreturn img, labeldef __len__(self):return len(self.img_path)root_dir = "dataset/train"
ants_label_dir = "ants"
bees_label_dir = "bees"
ants_dataset = MyData(root_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_label_dir)train_dataset = ants_dataset + bees_dataset

1.在jupytrer notebook中,可以使用help(xxx)或者xxx??来获取帮助文档。
2.__init__方法主要用于声明一些变量用于后续类内的方法。
3.python console可以显示变量的值,所以建议使用它来进行调试。
在这里插入图片描述
x.使用os.path.join()来拼接路径的好处是:适配windows和linux。

7-8.TensorBoard的使用

add_scalar

# tb.pyfrom torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter("logs")for i in range(100):writer.add_scalar("y=x", i, i)writer.close()

不要以test+其他字符作为.py文件的文件名(test.py是可以的),这会导致报empty suite(没有测试用例)。
详细参考:笔记19:在运行一个简单的carla例程时,报错 Empty Suite
SummaryWriter(log_dir, comment, ...)实例化时,log_dir是可选参数,表示事件文件存放地址。comment也是可选参数,会扩充事件文件的存放地址后缀。
add_scalar(tag, scalar_value, global_steap)调用时,tag是标题(标识符),scaler_value是y轴数值,gloabl_step是x轴数值。

# shell
tensorboard --logdir=logs --port=6007

一般上述命令打开6006端口,但如果一台服务器上有好几个人打开tensorboard,会麻烦。所以--port=6007可以指定端口。
如果两次写入的scalar写入的tag是相同的,那么两次scalar会在一个图上。

add_image

# P8_Tensorboard.py
from torch.utils.tensorboard import SummaryWriter
from PIL import Image
import numpy as npwriter = SummaryWriter("logs")
image_path = 'dataset/train/ants/0013035.jpg'
img_PIL = Image.open(image_path)
img_array = np.array(img_PIL)writer.add_image('test', img_array, 1, dataformats='HWC')writer.close()

add_image(tag, img_tensor, global_steap)调用时,img_tensor需要是torch.Tensor, numpy.ndarray或string等。
add_image默认匹配的图片的大小是(3, H, W),如果大小是(H, W, 3),需要添加参数dataformats='HWC'

9-13.Transforms的使用

# P9_Transformsfrom PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transformsimg_path = 'dataset/train/ants/0013035.jpg'
img = Image.open(img_path) # 得到PIL类型图片
# 这里也可以通过cv2.imread()读取图片,转化为nd.arraywriter = SummaryWriter('logs')tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img) # ToTensor支持PIL、nd.array图片类型作为输入writer.add_image('Tensor_img', tensor_img)writer.close()

对于一个模块文件,如transforms.py,可以借助pycharm的Structure快速了解其中定义的class类。
在这里插入图片描述
pip install opencv-python之后才能import cv2
Image.open()返回的是PIL类型的图片。cv2.imread()返回的是nd.array类型的图片。

常见的Transforms

类里面的__call__方法的作用是:使得实例化对象可以像函数一样被调用。

ToTensor

作用:将PIL,nd.array转化为Tensor类型。
这个对象的输入可以是PIL图像,也可以是np.ndarray。

Normalize

作用:对tensor格式的图像做标准化。需要多通道的均值和多通道的标准差。
这个对象的输入必须是tensor图像。

Resize

作用:变更大小。如果size的值是形如(h, w)的序列,则输出的大小就是(h, w)。如果size的值是一个标量,则较小的边长变成该标量,另一个边长成比例缩放。
这个对象的输入可以是PIL图像,也可以是np.array
(这意味着cv2.imread得到的ndarray也可以作为输入)。(之前的版本只能是PIL图像)

设置大小写不敏感的代码补缺:通过搜索settings->Editor->General->Code Completion,取消对Match Case的勾选
在这里插入图片描述

Compose

作用:组合各种transforms.xx

RandomCrop

作用:随机裁剪

代码实现

# P9_Transforms.pyfrom PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transformsimg_path = 'dataset/train/ants/0013035.jpg'
img = Image.open(img_path)writer = SummaryWriter('logs')# ToTensor
trans_totensor = transforms.ToTensor()
tensor_img = trans_totensor(img) # ToTensor支持PIL图片类型作为输入
writer.add_image('Tensor_img', tensor_img)# Normalize
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
img_norm = trans_norm(tensor_img) # 标准化
writer.add_image('Normalize', img_norm)# Resize
trans_resize = transforms.Resize((512, 512))
# img PIL -> resize -> img_resize PIL
img_resize = trans_resize(img)
# img_resize PIL -> resize -> img_resize tensor
img_resize = trans_totensor(img_resize)
writer.add_image('Resize', img_resize, 0)# Compose - resize - 2
trans_resize_2 = transforms.Resize(512)
# PIL -> PIL -> tensor
trans_compose = transforms.Compose([trans_resize_2, trans_totensor])
img_resize_2 = trans_compose(img)
writer.add_image('Resize', img_resize_2, 1)# RandomCrop
trans_random = transforms.RandomCrop(50)
trans_compose_2 = transforms.Compose([trans_random, trans_totensor])
for i in range(10):img_crop = trans_compose_2(img)writer.add_image('RandomCrop', img_crop, i)writer.close()

总结:
主要关注输入和输出。
多看官方文档
关注方法需要的参数

14.torchvision中的数据集使用

本节介绍如何将torchvision的数据集和transforms结合起来。

# P10_dataset_transformsimport torchvision
from torch.utils.tensorboard import SummaryWriter
from torchvision import transformsdataset_transform = transforms.Compose([transforms.ToTensor()])train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=dataset_transform, download=True
)
test_set = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=dataset_transform, download=True
)writer = SummaryWriter("p10")
for i in range(10):img, target = test_set[i]writer.add_image("test_set", img, i)writer.close()

15.DataLoader的使用

参考资料:torch.utils.data.DataLoader
在这里插入图片描述

# dataloaderimport torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWritertest_data = torchvision.datasets.CIFAR10('./dataset', train=False, transform=torchvision.transforms.ToTensor())test_loader = DataLoader(test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=False)# 测试数据集中第一张图片及target
img, target = test_data[0]
# print(img.shape) # (3, 32, 32)
# print(target)    # 3writer = SummaryWriter("dataloader")
step = 0
for data in test_loader:imgs, targets = data# print(imgs.shape) # (4, 3, 32, 32)# print(targets)    # [2, 7, 2, 2]writer.add_images('test_data', imgs, step) # 多张图片用add_imagesstep += 1writer.close()

16.神经网络的基本骨架-nn.Module的使用

在这里插入图片描述

按照上面的模版,定义模型名,继承Module类,重写forward函数。下面写一个例子。(这一节比较简单)

import torch
from torch import nnclass Tudui(nn.Module):def __init__(self, *args, **kwargs) -> None:super().__init__(*args, **kwargs)def forward(self, input):output = input + 1return outputtudui = Tudui()
x = torch.tensor(1.0)
output = tudui(x)
print(output)

17.卷积

第17个视频主要通过torch.nn.functional.conv2d来介绍stridepadding。这里略过。

import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoaderdataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True
)dataloader = DataLoader(dataset, batch_size=64)class Tudui(nn.Module):def __init__(self):super().__init__()self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)def forward(self, x):x = self.conv1(x)return xtudui = Tudui()
for data in dataloader:imgs, targets = dataoutput = tudui(imgs)print(imgs.shape)print(output.shape)

这篇关于[学习笔记](b站视频)PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】(ing)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025620

相关文章

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java如何获取视频文件的视频时长

《Java如何获取视频文件的视频时长》文章介绍了如何使用Java获取视频文件的视频时长,包括导入maven依赖和代码案例,同时,也讨论了在运行过程中遇到的SLF4J加载问题,并给出了解决方案... 目录Java获取视频文件的视频时长1、导入maven依赖2、代码案例3、SLF4J: Failed to lo

Python实现多路视频多窗口播放功能

《Python实现多路视频多窗口播放功能》这篇文章主要为大家详细介绍了Python实现多路视频多窗口播放功能的相关知识,文中的示例代码讲解详细,有需要的小伙伴可以跟随小编一起学习一下... 目录一、python实现多路视频播放功能二、代码实现三、打包代码实现总结一、python实现多路视频播放功能服务端开

Python实现视频转换为音频的方法详解

《Python实现视频转换为音频的方法详解》这篇文章主要为大家详细Python如何将视频转换为音频并将音频文件保存到特定文件夹下,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5. 注意事项

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea