经典算法,yuv与rgb互转,查表法,让你的软件飞起来

2024-06-02 22:18

本文主要是介绍经典算法,yuv与rgb互转,查表法,让你的软件飞起来,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码的运算速度取决于以下几个方面

1、 算法本身的复杂度,比如MPEG比JPEG复杂,JPEG比BMP图片的编码复杂。

2、 CPU自身的速度和设计架构

3、 CPU的总线带宽

4、 您自己代码的写法

将RGB格式的彩色图像先转换成YUV图像。

图像转换的公式如下:

Y = 0.299 * R + 0.587 * G + 0.114 * B;

图像尺寸640*480*24bit,RGB图像已经按照RGBRGB顺序排列的格式,放在内存里面了。

以下是输入和输出的定义:

#define XSIZE 640

#define YSIZE 480

#define IMGSIZE XSIZE * YSIZE

typedef struct RGB

{

unsigned char R;

unsigned char G;

unsigned char B;

}RGB;

struct RGB in[IMGSIZE]; //需要计算的原始数据

unsigned char out[IMGSIZE]; //计算后的结果

 

一、浮点运算

优化原则:图像是一个2D数组,我用一个一维数组来存储。编译器处理一维数组的效率要高过二维数组。

 

先写一个代码:

Y = 0.299 * R + 0.587 * G + 0.114 * B;

void calc_lum()

{

int i;

for(i = 0; i < IMGSIZE; i++)

{

double r,g,b,y;

unsigned char yy;

r = in[i].r;

g = in[i].g;

b = in[i].b;

y = 0.299 * r + 0.587 * g + 0.114 * b;

yy = y;

out[i] = yy;

}

}

这大概是能想得出来的最简单的写法了,实在看不出有什么毛病,好了,编译一下跑一跑吧。

第一次试跑

这个代码分别用vc6.0和gcc编译,生成2个版本,分别在pc上和我的embedded system上面跑。

速度多少?

在PC上,由于存在硬件浮点处理器,CPU频率也够高,计算速度为20秒。

我的embedded system,没有以上2个优势,浮点操作被编译器分解成了整数运算,运算速度为120秒左右。

 

二、整形运算 

上面这个代码还没有跑,我已经知道会很慢了,因为这其中有大量的浮点运算。只要能不用浮点运算,一定能快很多。

 

Y = 0.299 * R + 0.587 * G + 0.114 * B;

这个公式怎么能用定点的整数运算替代呢?

0.299 * R可以如何化简?

Y = 0.299 * R + 0.587 * G + 0.114 * B;

Y = D + E + F;

D = 0.299 * R;

E = 0.587 * G;

F = 0.114 * B;

我们就先简化算式D吧!

RGB的取值范围都是0~255,都是整数,只是这个系数比较麻烦,不过这个系数可以表示为:0.299 = 299 / 1000;

所以 D = ( R * 299) / 1000;

Y = (R * 299 + G * 587 + B * 114) / 1000;

 

这一下,能快多少呢?

Embedded system上的速度为45秒;

PC上的速度为2秒;

0.299 * R可以如何化简

Y = 0.299 * R + 0.587 * G + 0.114 * B;

Y = (R * 299 + G * 587 + B * 114) / 1000;

这个式子好像还有点复杂,可以再砍掉一个除法运算。

前面的算式D可以这样写:

0.299=299/1000=1224/4096

所以 D = (R * 1224) / 4096

Y=(R*1224)/4096+(G*2404)/4096+(B*467)/4096

再简化为:

Y=(R*1224+G*2404+B*467)/4096

这里的/4096除法,因为它是2的N次方,所以可以用移位操作替代,往右移位12bit就是把某个数除以4096了。

 

void calc_lum()

{

int i;

for(i = 0; i < IMGSIZE; i++)

{

int r,g,b,y;

r = 1224 * in[i].r;

g = 2404 * in[i].g;

b = 467 * in[i].b;

y = r + g + b;

y = y >> 12; //这里去掉了除法运算

out[i] = y;

}

}

这个代码编译后,又快了20%。

虽然快了不少,还是太慢了一些,20秒处理一幅图像,地球人都不能接受。

 


三、查表,速度提高为2秒

仔细端详一下这个式子!

Y = 0.299 * R + 0.587 * G + 0.114 * B;

Y=D+E+F;

D=0.299*R;

E=0.587*G;

F=0.114*B;

 

RGB的取值有文章可做,RGB的取值永远都大于等于0,小于等于255,我们能不能将D,E,F都预先计算好呢?然后用查表算法计算呢?

我们使用3个数组分别存放DEF的256种可能的取值,然后。。。

 


查表数组初始化

int D[256],F[256],E[256];

void table_init()

{

int i;

for(i=0;i<256;i++)

{

D[i]=i*1224;

D[i]=D[i]>>12;

E[i]=i*2404;

E[i]=E[i]>>12;

F[i]=i*467;

F[i]=F[i]>>12;

}

}

void calc_lum()

{

int i;

for(i = 0; i < IMGSIZE; i++)

{

int r,g,b,y;

r = D[in[i].r];//查表

g = E[in[i].g];

b = F[in[i].b];

y = r + g + b;

out[i] = y;

}

}

这一次的成绩把我吓出一身冷汗,执行时间居然从30秒一下提高到了2秒!在PC上测试这段代码,眼皮还没眨一下,代码就执行完了。一下提高15倍,爽不爽?


四、查表法+2ALU   速度提高为1秒

继续优化
很多embedded system的32bit CPU,都至少有2个ALU,能不能让2个ALU都跑起来?

 

void calc_lum()

{

int i;

for(i = 0; i < IMGSIZE; i += 2) //一次并行处理2个数据

{

int r,g,b,y,r1,g1,b1,y1;

r = D[in[i].r];//查表 //这里给第一个ALU执行

g = E[in[i].g];

b = F[in[i].b];

y = r + g + b;

out[i] = y;

r1 = D[in[i + 1].r];//查表 //这里给第二个ALU执行

g1 = E[in[i + 1].g];

b1 = F[in[i + 1].b];

y = r1 + g1 + b1;

out[i + 1] = y;

}

}

2个ALU处理的数据不能有数据依赖,也就是说:某个ALU的输入条件不能是别的ALU的输出,这样才可以并行。

这次成绩是1秒。

 


五、 int表改为unsigned short 表,并将函数声明为 inline   速度提高为0.5秒

查看这个代码

int D[256],F[256],E[256]; //查表数组

void table_init()

{

int i;

for(i=0;i<256;i++)

{

D[i]=i*1224;

D[i]=D[i]>>12;

E[i]=i*2404;

E[i]=E[i]>>12;

F[i]=i*467;

F[i]=F[i]>>12;

}

}

到这里,似乎已经足够快了,但是我们反复实验,发现,还有办法再快!

可以将int D[256],F[256],E[256]; //查表数组

更改为

unsigned short D[256],F[256],E[256]; //查表数组

 

这是因为编译器处理int类型和处理unsigned short类型的效率不一样。

再改动

inline void calc_lum()

{

int i;

for(i = 0; i < IMGSIZE; i += 2) //一次并行处理2个数据

{

int r,g,b,y,r1,g1,b1,y1;

r = D[in[i].r];//查表 //这里给第一个ALU执行

g = E[in[i].g];

b = F[in[i].b];

y = r + g + b;

out[i] = y;

r1 = D[in[i + 1].r];//查表 //这里给第二个ALU执行

g1 = E[in[i + 1].g];

b1 = F[in[i + 1].b];

y = r1 + g1 + b1;

out[i + 1] = y;

}

}

将函数声明为inline,这样编译器就会将其嵌入到母函数中,可以减少CPU调用子函数所产生的开销。

这次速度:0.5秒。

 











其实,我们还可以飞出地球的!

如果加上以下措施,应该还可以更快:

1、 把查表的数据放置在CPU的高速数据CACHE里面;

2、 把函数calc_lum()用汇编语言来写

 

其实,CPU的潜力是很大的

1、 不要抱怨你的CPU,记住一句话:“只要功率足够,砖头都能飞!”

2、 同样的需求,写法不一样,速度可以从120秒变化为0.5秒,说明CPU的潜能是很大的!看你如何去挖掘。

3、 我想:要是Microsoft的工程师都像我这样优化代码,我大概就可以用489跑windows XP了!

 

以上就是对《让你的软件飞起来》的摘录,下面,我将按照这位牛人的介绍,对RGB到YCbCr的转换算法做以总结。

 

Y = 0.299R + 0.587G + 0.114B
U = -0.147R - 0.289G + 0.436B
V = 0.615R - 0.515G - 0.100B

 

 

#deinfe SIZE 256

#define XSIZE 640

#define YSIZE 480

#define IMGSIZE XSIZE * YSIZE

typedef struct RGB

{

unsigned char r;

unsigned char g;

unsigned char b;

}RGB;

struct RGB in[IMGSIZE]; //需要计算的原始数据

unsigned char out[IMGSIZE * 3]; //计算后的结果

 

unsigned short Y_R[SIZE],Y_G[SIZE],Y_B[SIZE],U_R[SIZE],U_G[SIZE],U_B[SIZE],V_R[SIZE],V_G[SIZE],V_B[SIZE]; //查表数组

void table_init()

{

int i;

for(i = 0; i < SIZE; i++)

{

Y_R[i] = (i * 1224) >> 12; //Y对应的查表数组

Y_G[i] = (i * 2404) >> 12;

Y_B[i] = (i * 467) >> 12;

U_R[i] = (i * 602) >> 12; //U对应的查表数组

U_G[i] = (i * 1183) >> 12;

U_B[i] = (i * 1785) >> 12;

V_R[i] = (i * 2519) >> 12; //V对应的查表数组

V_G[i] = (i * 2109) >> 12;

V_B[i] = (i * 409) >> 12;

}

}

 

inline void calc_lum()

{

int i;

for(i = 0; i < IMGSIZE; i += 2) //一次并行处理2个数据

{

out[i] = Y_R[in[i].r] + Y_G[in[i].g] + Y_B[in[i].b]; //Y

out[i + IMGSIZE] = U_B[in[i].b] - U_R[in[i].r] - U_G[in[i].g]; //U

out[i + 2 * IMGSIZE] = V_R[in[i].r] - V_G[in[i].g] - V_B[in[i].b]; //V

 

out[i + 1] = Y_R[in[i + 1].r] + Y_G[in[i + 1].g] + Y_B[in[i + 1].b]; //Y

out[i + 1 + IMGSIZE] = U_B[in[i + 1].b] - U_R[in[i + 1].r] - U_G[in[i + 1].g]; //U

out[i + 1 + 2 * IMGSIZE] = V_R[in[i + 1].r] - V_G[in[i + 1].g] - V_B[in[i + 1].b]; //V

}

}

这篇关于经典算法,yuv与rgb互转,查表法,让你的软件飞起来的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025242

相关文章

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Ubuntu 怎么启用 Universe 和 Multiverse 软件源?

《Ubuntu怎么启用Universe和Multiverse软件源?》在Ubuntu中,软件源是用于获取和安装软件的服务器,通过设置和管理软件源,您可以确保系统能够从可靠的来源获取最新的软件... Ubuntu 是一款广受认可且声誉良好的开源操作系统,允许用户通过其庞大的软件包来定制和增强计算体验。这些软件

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

MySQL数据库宕机,启动不起来,教你一招搞定!

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG、Mongodb数据库运维(如安装迁移,性能优化、故障应急处理等)公众号:老苏畅谈运维欢迎关注本人公众号,更多精彩与您分享。 MySQL数据库宕机,数据页损坏问题,启动不起来,该如何排查和解决,本文将为你说明具体的排查过程。 查看MySQL error日志 查看 MySQL error日志,排查哪个表(表空间

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO