强化学习实践四:编写通用的格子世界环境类

2024-06-02 20:58

本文主要是介绍强化学习实践四:编写通用的格子世界环境类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

gym里内置了许多好玩经典的环境用于训练一个更加智能的个体,不过这些环境类绝大多数不能用来实践前五讲的视频内容,主要是由于这些环境类的观测空间的某个维度是连续变量而不是离散变量,这是前五讲内容还未涉及到的知识。为了配合解释David Silver视频公开课提到的一些示例,我参考了gym的思想设计了一个通用的格子世界环境类,该环境类的观测空间是一维离散变量,可以很好地模拟其公开课中提到的:简单格子、有风格子、随机行走、悬崖行走、随机策略(骷髅和钱袋子)等问题。在此基础上理解、实践强化学习的基础算法就相对简单而且直观了。

先贴上格子世界环境类的源文件:gridworld.py,只把该文件下载到您自己的文件夹内,导入其中的类或方法就可以了。已经内置的一些环境类UI界面类似下面这些:

 

一些内置的格子世界环境

简单或有风10*7格子世界

悬崖行走示例

随机行走示例

模仿Gridworld with Dynamic Programming 的一个格子世界

用户可以自定义格子的大小、水平和垂直格子数目、内部障碍分布、以及每一个格子的即时奖励值。在通用的格子世界环境类的UI界面中,我使用不同的颜色设置表示不同的意义,其中:

  • 带有蓝色边框的格子 表示起始状态;
  • 带有金黄色边框的格子 表示终止状态,终止状态可以不止一个;
  • 黑色的格子表示障碍格子,个体一般不能进入;
  • 其他不同颜色的格子表示格子的即时奖励值不同,奖励值为0的格子颜色为灰色,奖励值为负值颜色显示偏向与红色,值越小,红色越深;奖励值大于0的格子偏向于显示绿色,值越大,绿色越饱满;
  • 个体使用黄色圆形来表示。

 

如何使用通用的格子世界类来定制自己想要的格子环境:

通用的格子世界环境类接受如下参数:

def __init__(self, n_width:int=10,n_height:int = 7,u_size = 40,default_reward:float = 0,default_type = 0)

分别是水平方向上格子数量,竖直方向上格子数量,每一个单位格子的绘制边长(单位为像素值),默认每一个格子的即时奖励值以及默认格子的类型。定义格子类型值为0时为个体可进入格子,类型为1表示为障碍,个体不能进入。有兴趣可以修改代码支持更多的类型。

下面以一个悬崖行走格子世界环境为例,讲解如何使用通用的格子世界环境类来得到自己想要的格子世界环境对象。悬崖行走的例子出现在David Silver强化学习公开课的 第五讲 ,环境如下:

  • 首先,明确格子世界环境的布局:长宽格子数、内部的障碍、即时奖励、起始状态、终止状态等信息。对于悬崖行走示例来说,世界长 12、宽 4,起始位置在左下角,坐标为(0,0),终止状态在右下角,坐标为(11,0)。
  • 使用对应的参数建立一个格子世界环境类对象:
# 导入GridWorldEnv前确保当前代码文件与gridworld.py文件同在一个包内
from gridworld import GridWorldEnv
env = GridWorldEnv(n_width=12,          # 水平方向格子数量n_height = 4,        # 垂直方向格子数量u_size = 60,         # 可以根据喜好调整大小default_reward = -1, # 默认格子的即时奖励值default_type = 0)    # 默认的格子都是可以进入的
from gym import spaces                  # 导入spaces
env.action_space = spaces.Discrete(4)   # 设置行为空间支持的行为数量
# 格子世界环境类默认使用0表示左,1:右,2:上,3:下,4,5,6,7为斜向行走
# 具体可参考_step内的定义
# 格子世界的观测空间不需要额外设置,会自动根据传入的格子数量计算得到
  • 设置起始和终止状态,起始状态用元组描述,终止状态用列表描述:
env.start = (0,0)
env.ends = [(11,0)]
  • 对一些特殊格子的类型和即时奖励值进行修改,这里要把组成悬崖的格子的即时奖励设为-100,这个例子中没有不可进入的格子,所以不需要对格子类型进行修改。示例中悬崖格子是终止状态,因此有:
for i in range(10):env.rewards.append((i+1,0,-100))env.ends.append((i+1,0))
  • 特殊类型的格子设置类似于即时奖励设置,比如我们将坐标为(5,1)和(5,2)的两个格子设为不可进入,可以添加如下代码:
env.types = [(5,1,1),(5,2,1)]
  • 最后为了使这些设置在实际生效,调用刷新设置方法:
env.refresh_setting()

至此,我们自定义的格子世界环境就设置好了,调用其render()方法查看一下吧:

env.render()
input("press any key to continue...")

效果如下:

两块障碍已经顺利生成了,可是发现个体的位置不在起始位置,为此我们需要重置下个体的位置,只需要调用env的reset()方法就可以了:

env.reset()

再看效果符合预期:

生成这个环境完整的代码如下:

from gridworld import GridWorldEnv
from gym import spacesenv = GridWorldEnv(n_width=12,          # 水平方向格子数量n_height = 4,        # 垂直方向格子数量u_size = 60,         # 可以根据喜好调整大小default_reward = -1, # 默认格子的即时奖励值default_type = 0)    # 默认的格子都是可以进入的
env.action_space = spaces.Discrete(4)   # 设置行为空间数量
# 格子世界环境类默认使用0表示左,1:右,2:上,3:下,4,5,6,7为斜向行走
# 具体可参考_step内的定义
# 格子世界的观测空间不需要额外设置,会自动根据传输的格子数量计算得到
env.start = (0,0)
env.ends = [(11,0)]
for i in range(10):env.rewards.append((i+1,0,-100))env.ends.append((i+1,0))
env.types = [(5,1,1),(5,2,1)]
env.refresh_setting()
env.reset()
env.render()
input("press any key to continue...")

有了格子世界通用环境类,我们就可以比较方便定制自己的格子世界环境。为了方便使用,我也写好了几个内置的格子世界环境,大家只要调用相应的方法就可以得到它:

env = LargeGridWorld()   # 10*10的大格子
env = SimpleGridWorld()  # 10*7简单无风格子
env = WindyGridWorld()   # 10*7有风格子
env = RandomWalk()       # 随机行走
env = CliffWalk()        # 悬崖行走
env = SkullAndTreasure() # 骷髅和钱袋子示例

如果您希望让您的个体支持斜向行走,请将相应的行为空间参数设为8,同时请留意环境类的_step方法关于斜向行走状态的改变是否如您所愿的那样设置,您可以在此基础上定制自己的行为规则。

要使用格子世界环境类提供的功能,您必须已经实现安装了gym库以及其依赖库。关于如何安装gym库、如何向gym注册自定义的环境类可以参考相关教程。通过gym库提供的相关功能,你还可以把个体经历Episode的过程录制成视频。

下次实践编写与个体相关的代码来巩固我们对强化学习相关基础算法的理解。

 

本文转自:https://zhuanlan.zhihu.com/p/28109312

 

 

这篇关于强化学习实践四:编写通用的格子世界环境类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025073

相关文章

VSCode配置Anaconda Python环境的实现

《VSCode配置AnacondaPython环境的实现》VisualStudioCode中可以使用Anaconda环境进行Python开发,本文主要介绍了VSCode配置AnacondaPytho... 目录前言一、安装 Visual Studio Code 和 Anaconda二、创建或激活 conda

Ubuntu中Nginx虚拟主机设置的项目实践

《Ubuntu中Nginx虚拟主机设置的项目实践》通过配置虚拟主机,可以在同一台服务器上运行多个独立的网站,本文主要介绍了Ubuntu中Nginx虚拟主机设置的项目实践,具有一定的参考价值,感兴趣的可... 目录简介安装 Nginx创建虚拟主机1. 创建网站目录2. 创建默认索引文件3. 配置 Nginx4

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

Windows环境下安装达梦数据库的完整步骤

《Windows环境下安装达梦数据库的完整步骤》达梦数据库的安装大致分为Windows和Linux版本,本文将以dm8企业版Windows_64位环境为例,为大家介绍一下达梦数据库的具体安装步骤吧... 目录环境介绍1 下载解压安装包2 根据安装手册安装2.1 选择语言 时区2.2 安装向导2.3 接受协议

SpringBoot基于沙箱环境实现支付宝支付教程

《SpringBoot基于沙箱环境实现支付宝支付教程》本文介绍了如何使用支付宝沙箱环境进行开发测试,包括沙箱环境的介绍、准备步骤、在SpringBoot项目中结合支付宝沙箱进行支付接口的实现与测试... 目录一、支付宝沙箱环境介绍二、沙箱环境准备2.1 注册入驻支付宝开放平台2.2 配置沙箱环境2.3 沙箱

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co

基于.NET编写工具类解决JSON乱码问题

《基于.NET编写工具类解决JSON乱码问题》在开发过程中,我们经常会遇到JSON数据处理的问题,尤其是在数据传输和解析过程中,很容易出现编码错误导致的乱码问题,下面我们就来编写一个.NET工具类来解... 目录问题背景核心原理工具类实现使用示例总结在开发过程中,我们经常会遇到jsON数据处理的问题,尤其是

linux环境openssl、openssh升级流程

《linux环境openssl、openssh升级流程》该文章详细介绍了在Ubuntu22.04系统上升级OpenSSL和OpenSSH的方法,首先,升级OpenSSL的步骤包括下载最新版本、安装编译... 目录一.升级openssl1.官网下载最新版openssl2.安装编译环境3.下载后解压安装4.备份