强化学习实践一:Tic-Tac-Toe游戏

2024-06-02 20:58

本文主要是介绍强化学习实践一:Tic-Tac-Toe游戏,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里给出一个简单的强化学习例子Tic-Tac-Toe。这是一个简单的游戏,在一个3x3的九宫格里,两个人轮流下,直到有个人的棋子满足三个一横一竖或者一斜,赢得比赛游戏结束,或者九宫格填满也没有人赢,则和棋。

这个例子的完整代码在我的github。例子只有一个文件,很简单,代码首先会用两个电脑选手训练模型,然后可以让人和机器对战。当然,由于这个模型很简单,所以只要你不乱走,最后的结果都是和棋,当然想赢电脑也不是不可能的。

我们重点看看这个例子的模型,理解上面第二节的部分。如何训练强化学习模型可以先不管。代码部分大家可以自己去看,只有300多行。

首先看第一个要素环境的状态S。这是一个九宫格,每个格子有三种状态,即没有棋子(取值0),有第一个选手的棋子(取值1),有第二个选手的棋子(取值-1)。那么这个模型的状态一共有3^{9}=19683个。

接着我们看个体的动作A,这里只有9个格子,每次也只能下一步,所以最多只有9个动作选项。实际上由于已经有棋子的格子是不能再下的,所以动作选项会更少。实际可以选择动作的就是那些取值为0的格子。

第三个是环境的奖励R,这个一般是我们自己设计。由于我们的目的是赢棋,所以如果某个动作导致的改变到的状态可以使我们赢棋,结束游戏,那么奖励最高,反之则奖励最低。其余的双方下棋动作都有奖励,但奖励较少。特别的,对于先下的棋手,不会导致结束的动作奖励要比后下的棋手少。

# give reward to two players
def giveReward(self):if self.currentState.winner == self.p1Symbol:self.p1.feedReward(1)self.p2.feedReward(0)elif self.currentState.winner == self.p2Symbol:self.p1.feedReward(0)self.p2.feedReward(1)else:self.p1.feedReward(0.1)self.p2.feedReward(0.5)

第四个是个体的策略(policy)π,这个一般是学习得到的,我们会在每轮以较大的概率选择当前价值最高的动作,同时以较小的概率去探索新动作,在这里AI的策略如下面代码所示。

里面的exploreRate就是我们的第八个要素探索率ϵ。即策略是以1−ϵ的概率选择当前最大价值的动作,以ϵ的概率随机选择新动作。

# determine next action
def takeAction(self):state = self.states[-1]nextStates = []nextPositions = []for i in range(BOARD_ROWS):for j in range(BOARD_COLS):if state.data[i, j] == 0:nextPositions.append([i, j])nextStates.append(state.nextState(i, j, self.symbol).getHash())if np.random.binomial(1, self.exploreRate):np.random.shuffle(nextPositions)# Not sure if truncating is the best way to deal with exploratory step# Maybe it's better to only skip this step rather than forget all the historyself.states = []action = nextPositions[0]action.append(self.symbol)return actionvalues = []for hash, pos in zip(nextStates, nextPositions):values.append((self.estimations[hash], pos))np.random.shuffle(values)values.sort(key=lambda x: x[0], reverse=True)action = values[0][1]action.append(self.symbol)return action

第五个是价值函数,代码里用value表示。价值函数的更新代码里只考虑了当前动作的现有价值和得到的奖励两部分,可以认为我们的第六个模型要素衰减因子γ为0。具体的代码部分如下,价值更新部分的代码加粗。具体为什么会这样更新价值函数我们以后会讲。

# update estimation according to reward
def feedReward(self, reward):if len(self.states) == 0:returnself.states = [state.getHash() for state in self.states]target = rewardfor latestState in reversed(self.states):value = self.estimations[latestState] + self.stepSize * (target-self.estimations[latestState])self.estimations[latestState] = valuetarget = valueself.states = []

第七个是环境的状态转化模型, 这里由于每一个动作后,环境的下一个模型状态是确定的,也就是九宫格的每个格子是否有某个选手的棋子是确定的,因此转化的概率都是1,不存在某个动作后会以一定的概率到某几个新状态,比较简单。

以上就是强化学习的模型基础,从这个例子,相信大家对于强化学习的建模会有一个初步的认识了。

 

本文转自:https://www.cnblogs.com/pinard/p/9385570.html

 

 

这篇关于强化学习实践一:Tic-Tac-Toe游戏的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025069

相关文章

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定

Ubuntu中Nginx虚拟主机设置的项目实践

《Ubuntu中Nginx虚拟主机设置的项目实践》通过配置虚拟主机,可以在同一台服务器上运行多个独立的网站,本文主要介绍了Ubuntu中Nginx虚拟主机设置的项目实践,具有一定的参考价值,感兴趣的可... 目录简介安装 Nginx创建虚拟主机1. 创建网站目录2. 创建默认索引文件3. 配置 Nginx4

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co