【Text2SQL 论文】DBCopilot:将 NL 查询扩展到大规模数据库

2024-06-02 16:36

本文主要是介绍【Text2SQL 论文】DBCopilot:将 NL 查询扩展到大规模数据库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:DBCopilot: Scaling Natural Language Querying to Massive Databases

⭐⭐⭐⭐

Code: DBCopilot | GitHub

一、论文速读

论文认为目前的 Text2SQL 研究大多只关注具有少量 table 的单个数据库上的查询,但在面对大规模数据库和数据仓库的查询时时却力显不足。本文提出的 DBCopilot 能够在大规模数据库上查询模式不可知的 NL question。

论文指出,实现这个的核心是:从能够构建各种 NL question 到海量数据库模型元素的 semantic mapping,从而能够自动识别目标数据库并过滤出最少的相关 tables。但目前的基于 LLM 的方法有两个主要挑战:

  • 由于 token 限制,无法将所有 schema 都输入给 LLM
  • LLM 仍然难以有效利用长上下文中的信息

而在解决可扩展性的问题时,主要有基于 retrieval 的方法和基于 fine-tune 的方法,但是,

  • 基于 retrieval 的方法往往是将 doc 视为检索对象,忽略了 DB 和 DB table 之间的关系;
  • fine-tune LLM 来为其注入 schema 的相关知识是资源密集型的方式,且有时候 LLM 是无法微调的

DBCopilot 的做法如下图所示:

在这里插入图片描述

主要分成两步:

  1. Schema Routing:输入 user question,使用 DSI 技术找到所需要用的 DB 和 DB tables,也就是 DB schema。
  2. SQL Generation:输入 user question、DB schema,通过 prompt LLM 生成 SQL query。

二、问题定义

2.1 Schema-Agnostic NL2SQL

Schema-Agnostic NL2SQL 指的是:只给定 user question 而不给定预期的 SQL query schema(DB 和 DB tables),来生成一个可以在一个数据库集合中的某个 DB 上执行的 SQL。

像之前 WikiSQL 数据集上,都是指定 question 在哪个 DB 上的。

2.2 Schema Linking VS. Schema Routing

在以往的 NL2SQL 中,Schema Linking 的 input 是 question 和 schema,用于寻找 NL question 中提及到的 schema 元素(比如 tables、columns 或者 database value),可以被视作是一个 NL question 和 DB elements 之间的桥梁。

Schema Routing 的 input 只有不知道 schema 的 question,它的输出是一个 indexed or memorized schema。

三、方法

3.1 Schema Routing

本文使用一个轻量级的 seq2seq 模型来作为 router,实现将 NL 识别出对应的 DB schema。

由于 space schema 很大(是 table 和 column 的笛卡尔积)、且 DB schema 可以发生变化,因此本文提出了一个 relation-aware、end-to-end joint retrieval 方法来解决 schema routing 问题

具体做法是,先为 databases 构建一个 schema graph,然后设计一个 schema 序列化算法来将一个 schema 转化为 token-sequence,利用 graph-based contrained decoding 解码算法来让 seq2seq 模型生成 routing 的结果 DB schema。

3.1.1 Schema Graph

schema graph 包含了 databases 的 schema 信息,这个 graph 的 nodes 包含三类:

  • v s v_s vs:一个特殊节点,指代含有所有 databases 的集合
  • database
  • DB table

graph 的 edge 包含两类:

  • Inclusion relation:表示一个 db 是否是一个 db collection 的一部分;或者一个 table 是否属于一个 db
  • Table relation:包含显式的 PRIMARY-FOREIGN 关系和隐式的 FOREIGN-FOREIGN 关系

隐式的 FOREIGN-FOREIGN 关系指的是:A 表和 B 表的某个 column 共同连接到另一个 C 表的 key

由此,任何有效的 SQL query schema 都是这个 schema graph 上的一个 trail(或者叫一个 path)。

3.1.2 Schema Serialization

这个序列化算法将一个 SQL query schema 序列化为一个 token seq,当然也可以将一个 token seq 解码出一个 DB schema。

具体的做法可以参考原论文,这里主要是基于 DFS(深度优先遍历)的思想。

有了这个序列化算法,当我们训练 seq2seq 的 schema router 模型时,由于需要监督它的 training data 是 (NL question, DB schema) pair,其中的 DB schema 就是序列化了的 schema。另外,router 的输出是一个 token seq,也需要反序列化将其转为结构化的 DB schema。

3.1.3 graph-based 的解码算法

在让 schema router 生成 token seq 时,为保证其生成的 schema 的有效性,每一个自回归生成的 step 中,都受到一个动态前缀树的约束,这个 tree 包含了解码后 schema 元素的可能访问节点的名称,如下图所示:

在这里插入图片描述

这样,每个生成 step 的可用 tokens 都可以通过搜索前缀树来获得,前缀就是在最后一个元素分隔符之后生成的 token。同时这里使用 diverse beam search 来生成多个候选序列。

3.1.4 schema router 的训练和推理

我们需要使用 (NL question, DB schema) 这样的 pairs 来作为 training data 来训练 router,但是目前缺少这样的训练资料。所以,本文提出了使用一个训练数据合成方法来生成 question-schema pairs。

这个训练数据合成方法具体来说就是:茨贝格 schema graph 中采样出一批合法的 schema,然后对每一个 schem 生成一个 pseudo-question,如下图所示:

在这里插入图片描述

具体的这个模型的训练可以参考原论文。

由此就可以得到用于训练 schema router 的 question-schema pairs

之后,我们就可以训练 Schema Router 了。训练数据集是 { ( N i , S i ) } \{(N_i, S_i)\} {(Ni,Si)},也就是 quetsion-schema pairs,模型的训练损失函数如下:

在这里插入图片描述

训练出来之后,就可以使用 graph-based 的解码算法来做推理了。

3.2 SQL Generation

通过将 NL2SQL 任务解耦为 schema routing 和 SQL generation 两个部分,DB Copilot 可以与现在的 LLM-advanced NL2SQL 的解决方案进行融合,无论是 in-context prompt engineering 方法或者特定的 NL2SQL LLM。

前面的 schema router 可以为 NL 生成来自多个 db 的多个 schemas,这里探索了 3 种 prompt 策略来为 LLM 选择和合并这些不同的 DB schema:

  1. Best Schema Prompting:从 schema router 种选择生成的最高概率的 schema 来 instruct LLM
    • 实验发现这种方式是最优的
  2. Multiple Schema Prompting:将 beam search 得到的多个 table schemas 简单连接起来一起用来 instruct LLM。
  3. Multiple Schema COT Prompting:使用多个 candidate schemas 通过 COT 来 instruct LLM

四、实验

论文在 Spider、Bird、Fiben 数据集上对 schema retrieval 和 NL2SQL 两个任务上进行实验对比,DBCopilot 有不错的表现。

这里 NL2SQL 任务并没有与其他 SOTA 模型做实验对比

五、总结

本文提出了 DBCopilot 模型,给出了一种将 NL 查询扩展到大规模数据库的思路,通过 LLM 协作来解决模式无关的 NL2SQL 任务。

总之,DBCopilot 突破了 NL2SQL 的界限,使得研究人员能够更好地执行数据可访问性的策略。

这篇关于【Text2SQL 论文】DBCopilot:将 NL 查询扩展到大规模数据库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024504

相关文章

房产证 不动产查询

陕西政务服务网(便民服务)陕西政务服务网(手机版?更直观)不动产权证书|不动产登记证明(电子证照)商品房合同备案查询权利人查询

关于如何更好管理好数据库的一点思考

本文尝试从数据库设计理论、ER图简介、性能优化、避免过度设计及权限管理方面进行思考阐述。 一、数据库范式 以下通过详细的示例说明数据库范式的概念,将逐步规范化一个例子,逐级说明每个范式的要求和变换过程。 示例:学生课程登记系统 初始表格如下: 学生ID学生姓名课程ID课程名称教师教师办公室1张三101数学王老师101室2李四102英语李老师102室3王五101数学王老师101室4赵六103物理陈

数据库期末复习知识点

A卷 1. 选择题(30') 2. 判断范式(10') 判断到第三范式 3. 程序填空(20') 4. 分析填空(15') 5. 写SQL(25') 5'一题 恶性 B卷 1. 单选(30') 2. 填空 (20') 3. 程序填空(20') 4. 写SQL(30') 知识点 第一章 数据库管理系统(DBMS)  主要功能 数据定义功能 (DDL, 数据定义语

通过高德api查询所有店铺地址信息

通过高德api查询所有店铺地址电话信息 需求:通过高德api查询所有店铺地址信息需求分析具体实现1、申请高德appkey2、下载types city 字典值3、具体代码调用 需求:通过高德api查询所有店铺地址信息 需求分析 查询现有高德api发现现有接口关键字搜索API服务地址: https://developer.amap.com/api/webservice/gui

给数据库的表添加字段

周五有一个需求是这样的: 原来数据库有一个表B,现在需要添加一个字段C,我把代码中增删改查部分进行了修改, 比如insert中也添入了字段C。 但没有考虑到一个问题,数据库的兼容性。因为之前的版本已经投入使用了,再升级的话,需要进行兼容处理,当时脑子都蒙了,转不过来,后来同事解决了这个问题。 现在想想,思路就是,把数据库的表结构存入文件中,如xxx.sql 实时更新该文件: CREAT

iptables(7)扩展模块state

简介         前面文章我们已经介绍了一些扩展模块,如iprange、string、time、connlimit、limit,还有扩展匹配条件如--tcp-flags、icmp。这篇文章我们介绍state扩展模块  state          在 iptables 的上下文中,--state 选项并不是直接关联于一个扩展模块,而是与 iptables 的 state 匹配机制相关,特

SQL Server中,查询数据库中有多少个表,以及数据库其余类型数据统计查询

sqlserver查询数据库中有多少个表 sql server 数表:select count(1) from sysobjects where xtype='U'数视图:select count(1) from sysobjects where xtype='V'数存储过程select count(1) from sysobjects where xtype='P' SE

SQL Server中,添加数据库到AlwaysOn高可用性组条件

1、将数据添加到AlwaysOn高可用性组,需要满足以下条件: 2、更多具体AlwaysOn设置,参考:https://msdn.microsoft.com/zh-cn/library/windows/apps/ff878487(v=sql.120).aspx 注:上述资源来自MSDN。

SQL Server中,用Restore DataBase把数据库还原到指定的路径

restore database 数据库名 from disk='备份文件路径' with move '数据库文件名' to '数据库文件放置路径', move '日志文件名' to '日志文件存放置路径' Go 如: restore database EaseWe from disk='H:\EaseWe.bak' with move 'Ease

数据库原理与安全复习笔记(未完待续)

1 概念 产生与发展:人工管理阶段 → \to → 文件系统阶段 → \to → 数据库系统阶段。 数据库系统特点:数据的管理者(DBMS);数据结构化;数据共享性高,冗余度低,易于扩充;数据独立性高。DBMS 对数据的控制功能:数据的安全性保护;数据的完整性检查;并发控制;数据库恢复。 数据库技术研究领域:数据库管理系统软件的研发;数据库设计;数据库理论。数据模型要素 数据结构:描述数据库