【Text2SQL 论文】DBCopilot:将 NL 查询扩展到大规模数据库

2024-06-02 16:36

本文主要是介绍【Text2SQL 论文】DBCopilot:将 NL 查询扩展到大规模数据库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:DBCopilot: Scaling Natural Language Querying to Massive Databases

⭐⭐⭐⭐

Code: DBCopilot | GitHub

一、论文速读

论文认为目前的 Text2SQL 研究大多只关注具有少量 table 的单个数据库上的查询,但在面对大规模数据库和数据仓库的查询时时却力显不足。本文提出的 DBCopilot 能够在大规模数据库上查询模式不可知的 NL question。

论文指出,实现这个的核心是:从能够构建各种 NL question 到海量数据库模型元素的 semantic mapping,从而能够自动识别目标数据库并过滤出最少的相关 tables。但目前的基于 LLM 的方法有两个主要挑战:

  • 由于 token 限制,无法将所有 schema 都输入给 LLM
  • LLM 仍然难以有效利用长上下文中的信息

而在解决可扩展性的问题时,主要有基于 retrieval 的方法和基于 fine-tune 的方法,但是,

  • 基于 retrieval 的方法往往是将 doc 视为检索对象,忽略了 DB 和 DB table 之间的关系;
  • fine-tune LLM 来为其注入 schema 的相关知识是资源密集型的方式,且有时候 LLM 是无法微调的

DBCopilot 的做法如下图所示:

在这里插入图片描述

主要分成两步:

  1. Schema Routing:输入 user question,使用 DSI 技术找到所需要用的 DB 和 DB tables,也就是 DB schema。
  2. SQL Generation:输入 user question、DB schema,通过 prompt LLM 生成 SQL query。

二、问题定义

2.1 Schema-Agnostic NL2SQL

Schema-Agnostic NL2SQL 指的是:只给定 user question 而不给定预期的 SQL query schema(DB 和 DB tables),来生成一个可以在一个数据库集合中的某个 DB 上执行的 SQL。

像之前 WikiSQL 数据集上,都是指定 question 在哪个 DB 上的。

2.2 Schema Linking VS. Schema Routing

在以往的 NL2SQL 中,Schema Linking 的 input 是 question 和 schema,用于寻找 NL question 中提及到的 schema 元素(比如 tables、columns 或者 database value),可以被视作是一个 NL question 和 DB elements 之间的桥梁。

Schema Routing 的 input 只有不知道 schema 的 question,它的输出是一个 indexed or memorized schema。

三、方法

3.1 Schema Routing

本文使用一个轻量级的 seq2seq 模型来作为 router,实现将 NL 识别出对应的 DB schema。

由于 space schema 很大(是 table 和 column 的笛卡尔积)、且 DB schema 可以发生变化,因此本文提出了一个 relation-aware、end-to-end joint retrieval 方法来解决 schema routing 问题

具体做法是,先为 databases 构建一个 schema graph,然后设计一个 schema 序列化算法来将一个 schema 转化为 token-sequence,利用 graph-based contrained decoding 解码算法来让 seq2seq 模型生成 routing 的结果 DB schema。

3.1.1 Schema Graph

schema graph 包含了 databases 的 schema 信息,这个 graph 的 nodes 包含三类:

  • v s v_s vs:一个特殊节点,指代含有所有 databases 的集合
  • database
  • DB table

graph 的 edge 包含两类:

  • Inclusion relation:表示一个 db 是否是一个 db collection 的一部分;或者一个 table 是否属于一个 db
  • Table relation:包含显式的 PRIMARY-FOREIGN 关系和隐式的 FOREIGN-FOREIGN 关系

隐式的 FOREIGN-FOREIGN 关系指的是:A 表和 B 表的某个 column 共同连接到另一个 C 表的 key

由此,任何有效的 SQL query schema 都是这个 schema graph 上的一个 trail(或者叫一个 path)。

3.1.2 Schema Serialization

这个序列化算法将一个 SQL query schema 序列化为一个 token seq,当然也可以将一个 token seq 解码出一个 DB schema。

具体的做法可以参考原论文,这里主要是基于 DFS(深度优先遍历)的思想。

有了这个序列化算法,当我们训练 seq2seq 的 schema router 模型时,由于需要监督它的 training data 是 (NL question, DB schema) pair,其中的 DB schema 就是序列化了的 schema。另外,router 的输出是一个 token seq,也需要反序列化将其转为结构化的 DB schema。

3.1.3 graph-based 的解码算法

在让 schema router 生成 token seq 时,为保证其生成的 schema 的有效性,每一个自回归生成的 step 中,都受到一个动态前缀树的约束,这个 tree 包含了解码后 schema 元素的可能访问节点的名称,如下图所示:

在这里插入图片描述

这样,每个生成 step 的可用 tokens 都可以通过搜索前缀树来获得,前缀就是在最后一个元素分隔符之后生成的 token。同时这里使用 diverse beam search 来生成多个候选序列。

3.1.4 schema router 的训练和推理

我们需要使用 (NL question, DB schema) 这样的 pairs 来作为 training data 来训练 router,但是目前缺少这样的训练资料。所以,本文提出了使用一个训练数据合成方法来生成 question-schema pairs。

这个训练数据合成方法具体来说就是:茨贝格 schema graph 中采样出一批合法的 schema,然后对每一个 schem 生成一个 pseudo-question,如下图所示:

在这里插入图片描述

具体的这个模型的训练可以参考原论文。

由此就可以得到用于训练 schema router 的 question-schema pairs

之后,我们就可以训练 Schema Router 了。训练数据集是 { ( N i , S i ) } \{(N_i, S_i)\} {(Ni,Si)},也就是 quetsion-schema pairs,模型的训练损失函数如下:

在这里插入图片描述

训练出来之后,就可以使用 graph-based 的解码算法来做推理了。

3.2 SQL Generation

通过将 NL2SQL 任务解耦为 schema routing 和 SQL generation 两个部分,DB Copilot 可以与现在的 LLM-advanced NL2SQL 的解决方案进行融合,无论是 in-context prompt engineering 方法或者特定的 NL2SQL LLM。

前面的 schema router 可以为 NL 生成来自多个 db 的多个 schemas,这里探索了 3 种 prompt 策略来为 LLM 选择和合并这些不同的 DB schema:

  1. Best Schema Prompting:从 schema router 种选择生成的最高概率的 schema 来 instruct LLM
    • 实验发现这种方式是最优的
  2. Multiple Schema Prompting:将 beam search 得到的多个 table schemas 简单连接起来一起用来 instruct LLM。
  3. Multiple Schema COT Prompting:使用多个 candidate schemas 通过 COT 来 instruct LLM

四、实验

论文在 Spider、Bird、Fiben 数据集上对 schema retrieval 和 NL2SQL 两个任务上进行实验对比,DBCopilot 有不错的表现。

这里 NL2SQL 任务并没有与其他 SOTA 模型做实验对比

五、总结

本文提出了 DBCopilot 模型,给出了一种将 NL 查询扩展到大规模数据库的思路,通过 LLM 协作来解决模式无关的 NL2SQL 任务。

总之,DBCopilot 突破了 NL2SQL 的界限,使得研究人员能够更好地执行数据可访问性的策略。

这篇关于【Text2SQL 论文】DBCopilot:将 NL 查询扩展到大规模数据库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024504

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

查询SQL Server数据库服务器IP地址的多种有效方法

《查询SQLServer数据库服务器IP地址的多种有效方法》作为数据库管理员或开发人员,了解如何查询SQLServer数据库服务器的IP地址是一项重要技能,本文将介绍几种简单而有效的方法,帮助你轻松... 目录使用T-SQL查询方法1:使用系统函数方法2:使用系统视图使用SQL Server Configu

SQL Server数据库迁移到MySQL的完整指南

《SQLServer数据库迁移到MySQL的完整指南》在企业应用开发中,数据库迁移是一个常见的需求,随着业务的发展,企业可能会从SQLServer转向MySQL,原因可能是成本、性能、跨平台兼容性等... 目录一、迁移前的准备工作1.1 确定迁移范围1.2 评估兼容性1.3 备份数据二、迁移工具的选择2.1

Python中连接不同数据库的方法总结

《Python中连接不同数据库的方法总结》在数据驱动的现代应用开发中,Python凭借其丰富的库和强大的生态系统,成为连接各种数据库的理想编程语言,下面我们就来看看如何使用Python实现连接常用的几... 目录一、连接mysql数据库二、连接PostgreSQL数据库三、连接SQLite数据库四、连接Mo

Oracle数据库如何切换登录用户(system和sys)

《Oracle数据库如何切换登录用户(system和sys)》文章介绍了如何使用SQL*Plus工具登录Oracle数据库的system用户,包括打开登录入口、输入用户名和口令、以及切换到sys用户的... 目录打开登录入口登录system用户总结打开登录入口win+R打开运行对话框,输php入:sqlp

MYSQL关联关系查询方式

《MYSQL关联关系查询方式》文章详细介绍了MySQL中如何使用内连接和左外连接进行表的关联查询,并展示了如何选择列和使用别名,文章还提供了一些关于查询优化的建议,并鼓励读者参考和支持脚本之家... 目录mysql关联关系查询关联关系查询这个查询做了以下几件事MySQL自关联查询总结MYSQL关联关系查询