Leecode---多维动态规划---不同路径 / 最小路径和

2024-06-02 11:36

本文主要是介绍Leecode---多维动态规划---不同路径 / 最小路径和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
动态规划—三部曲
1、确定dp数组以及下标含义
dp[i][j]:表示从(0,0)出发,到(i,j)有dp[i][j]条不同的路径
2、确定递推公式
dp[i][j] = dp[i-1][j] + dp[i][j-1]
3、dp数组的初始化
如何初始化,dp[i][0]一定都是1,因为从(0,0)到(0,i)的路径只有一条,dp[0][j]同理:

for (int i = 0; i<m; i++) dp[i][0] = 1;
for (int j = 0; j<n; j++) dp[0][j] = 1;

知识点补充:二维容器vector< vector > 初始化方法解析:

vector<vector<int>> table(size1, vector<int>(size2, 0));

代码说明:声明一个名为table的容器,其元素为vector的容器。简单来说类似一个int型的二维数组。
这样,就得到了一个如下图所示的二维容器。
在这里插入图片描述
理解如下
在这里插入图片描述
图中,将外围容器table的初始化参数分成了两部分A、B。
A: table外围容器的大小
B: table外围容器的内容,即size1个vector型的元素。
B1:内部容器的大小
B2:内部容器的内容

同理:三维容器初始化:
定义一个长宽高为2x3x5的立方体容器,每个元素为0:

//长宽高:2*3*5 vector<vector<vector<int>>> cube(5, vector<vector<int>>(3, vector<int>(2, 0)));

C++代码如下

class Solution
{
public:int uniquePaths(int m, int n){// 声明一个名为dp的容器,其元素为vector的容器,类似一个int型的二维数组。vector<vector<int>> dp(m, vector<int>(n,0));for (int i = 0; i<m; i++) dp[i][0] = 1;for (int j = 0; j<n; j++) dp[0][j] = 1;for (int i = 1; i<m; i++){for(int j = 1; j<n; j++){dp[i][j] = dp[i-1][j] + dp[i][j-1];}}return dp[m-1][n-1];}
};

解法二、深搜(超时但同样容易理解)
机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点!
在这里插入图片描述
此时问题就可以转化为求二叉树叶子节点的个数,代码如下:

class Solution
{
private:int dfs(int i, int j, int m, int n){if(i>m || j>n) return 0;	//越界if(i == m && j == n) return 1;	// 找到一种方法,相当于找到了叶子节点return dfs(i+1, j, m, n) + dfs(i, j+1, m, n);}
public:int uniquePaths(int m, int n){return dfs(1,1,m,n);}
};

在这里插入图片描述
动态规划—三部曲
1、确定dp数组以及下标含义
dp(i,j):表示从(0,0)出发,到(i,j)的最小路径和
2、确定递推公式(转移方程)
左位置和上位置的最短路径和的最小值,加上当前位置的值:
dp(i,j) = min{dp(i-1,j), dp(i,j-1)} + arr[i][j]
3、dp数组的初始化
最左一列和第一行的所有位置都必须作为初始值,防止递推越界。
dp(0,j) = dp(0, j-1) + arr[0][j]
dp(i,0) = dp(i-1, 0) + arr[i][0]
返回值:返回数组右下角的值dp(m-1, n-1)

class Solution
{
public:int minPathSum(vector<vector<int>>& grid){int row = grid.size();int col = grid[0].size();// 初始化for(int i = 1; i<row; i++)grid[i][0] += grid[i-1][0];for(int j = 1; j<col; j++)grid[0][j] += grid[0][j-1];// dp 过程for(int i = 1; i<row; i++){for(int j = 1; j<col; j++){grid[i][j] += min(grid[i-1][j], grid[i][j-1]); }}return grid[row-1][col-1];}
};

这篇关于Leecode---多维动态规划---不同路径 / 最小路径和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023853

相关文章

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i