语音降噪算法库介绍

2024-06-02 10:20
文章标签 算法 介绍 语音 降噪

本文主要是介绍语音降噪算法库介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.语音降噪技术方向介绍

   软件上进行语音降噪目前主要是两个方向:传统降噪算法和AI降噪算法,他们各有千秋,目前看他们各有千秋,有各自适用场景。

推荐一个不错的人工智能学习网站,通俗易懂,内容全面,作为入门科普和学习提升都不错,分享一下给大家:前言 – 人工智能教程

1.两者的对比:

传统降噪算法:

**原理**:传统降噪算法通常基于信号处理的理论,如滤波器设计、频谱分析和信号建模等。它们通过分析信号的统计特性或频谱特性来去除噪声。

**实现方式**:传统降噪算法通常包括低通滤波器、高通滤波器、带通滤波器、谱减法、维纳滤波器和自适应滤波器等。这些算法通常需要手动调整参数以适应不同的噪声环境。

**效果**:传统降噪算法在处理简单或已知的噪声类型时效果较好,但对于复杂的噪声环境或非平稳噪声,效果可能有限。

**计算复杂度**:传统降噪算法的计算复杂度相对较低,可以在较低性能的硬件上运行。

AI降噪算法:

**原理**:AI降噪算法基于机器学习和深度学习的技术,通过训练神经网络来识别和去除噪声。这些算法可以从大量的数据中学习噪声的特征,并自动调整参数以适应不同的噪声环境。

**实现方式**:AI降噪算法通常使用卷积神经网络(CNN)、循环神经网络(RNN)或变换器(Transformer)等深度学习模型。这些模型可以自动提取信号的特征,并通过非线性变换来去除噪声。

**效果**:AI降噪算法在处理复杂的噪声环境和非平稳噪声时效果更好,因为它们可以从数据中学习噪声的复杂特征,并自动适应不同的噪声类型。

**计算复杂度**:AI降噪算法的计算复杂度较高,通常需要较高的性能硬件支持,如GPU。

对比总结:

**适应性**:AI降噪算法具有更好的适应性,能够自动调整参数以适应不同的噪声环境。

**效果**:AI降噪算法在处理复杂的噪声环境时效果更好,但需要大量的训练数据和较高的计算资源。

**计算资源**:传统降噪算法通常需要较低的计算资源,适合在资源受限的设备上运行。

**实现复杂度**:AI降噪算法的实现复杂度较高,需要专业的机器学习和深度学习知识。

二.降噪算法开源算法库

1.传统降噪算法库

(1)RNNoise:

     这是一款由http://Xiph.Org基金会开发的神经网络语音降噪库。它使用神经网络模型来进行语音降噪,可以在实时对讲和非实时批处理两种模式下工作。该库支持C,C++和Python接口,并且性能很好。

(2)Speex:

     这是一个开源的语音编解码库,它包含一个降噪模组,可以使用多种滤波算法进行语音降噪,比如谱减法、决策导向算法等。Speex支持C,C++接口,广泛应用于VoIP产品中。

(3)WebRTC:

     这是一个开源的实时通信框架,它包含了一个高性能的降噪引擎,基于神经网络模型,可以对音频采样进行降噪。WebRTC支持C,C++,Objective-C,Java和JavaScript等多语言接口,应用十分广泛。

2.AI降噪算法库

(1)Anthropic Deep Noise Cancellation (DNC):

     这是一个开源的深度学习语音降噪模型,由Anthropic开发。它是一个Keras实现的卷积神经网络模型,通过训练获得很高的降噪效果。该模型可以导出为TensorFlow, PyTorch和ONNX格式,支持多种语言和框架进行部署。

(2)NSNet:

     这是一个开源的实时神经网络语音降噪系统,支持单声道和多声道信号降噪。它由两个神经网络模型组成,一个检测器网络和一个降噪网络,可以有效移除 stationary 和 non-stationary 噪声。NSNet支持TensorFlow和PyTorch部署。

(3)一个在线的AI降噪处理网站

     https://audo.ai/api

     

三.WebRTC降噪模块

   网上有人把WebRTC的噪声抑制模块提取出来,也做了一些细节优化,目前可以支持8k、16k采样率的pcm数据,实际测试效果还是挺不错的,可以看下测试对比图片:

   目前这个算法可以应用到多种平台,像windows、linux、android、ios、arm平台都可以支持,效果基本差别不大。

   下载地址:https://download.csdn.net/download/unique_no1/82328350

这篇关于语音降噪算法库介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023693

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

Python实现html转png的完美方案介绍

《Python实现html转png的完美方案介绍》这篇文章主要为大家详细介绍了如何使用Python实现html转png功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 1.增强稳定性与错误处理建议使用三层异常捕获结构:try: with sync_playwright(

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音

JAVA SE包装类和泛型详细介绍及说明方法

《JAVASE包装类和泛型详细介绍及说明方法》:本文主要介绍JAVASE包装类和泛型的相关资料,包括基本数据类型与包装类的对应关系,以及装箱和拆箱的概念,并重点讲解了自动装箱和自动拆箱的机制,文... 目录1. 包装类1.1 基本数据类型和对应的包装类1.2 装箱和拆箱1.3 自动装箱和自动拆箱2. 泛型2

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.