2024 第三届 AIGC 中国开发者大会:多模态大模型的发展与趋势

本文主要是介绍2024 第三届 AIGC 中国开发者大会:多模态大模型的发展与趋势,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在2024年第三届AIGC中国开发者大会上,零一万物联合创始人潘欣分享了多模态大模型的发展与趋势。潘欣对多模态大模型的历史、现状和未来进行了详细回顾和深刻思考,为我们揭示了该领域的发展路径和技术前景。本文将详细解读潘欣的分享内容,探讨多模态大模型的技术背景、发展历程、应用案例以及未来展望。

一、多模态大模型的技术背景

1.1 早期的任务特定单模态模型

在多模态大模型出现之前,机器学习主要集中在任务特定的单模态模型上。2012年,随着AlexNet的出现,单模态模型在图像分类任务上取得了巨大成功。这些模型通常针对特定任务进行训练,例如图像分类、语音识别或自然语言处理(NLP),需要分别训练不同的模型并收集相应的数据。

1.2 通用单模态模型的兴起

随着技术的进步,到2018年,单模态模型逐渐向通用模型发展。例如,在NLP领域,BERT模型的出现标志着一种新的训练方式,即掩码语言模型(Mask Language Model),通过自监督或无监督的方式训练,提高了训练效率。进一步,GPT-3的出现将模型参数量提升到170B级别,使其能够处理多种任务并包含广泛的世界知识。

二、多模态大模型的发展历程

2.1 从单任务到多任务

在视觉和语音领域,类似的转变也在发生。Clip模型在2020年出现,使得视觉模型从单任务转向通用模型,能够处理开放词表的分类和检测任务。同样,在生成类任务中,从StyleGAN到Stable Diffusion模型的发展,使得图像生成模型能够通过一个模型生成任意图像内容。

2.2 融合多模态输入与输出

多模态大模型的下一步是支持任意模态的输入和输出。例如,GPT-4已经展示了这种能力,能够处理文本、图像和语音等多种模态的输入,并生成相应的输出。这种多模态融合的能力,使得模型能够更全面地理解和生成内容。

三、多模态大模型的技术实现

3.1 编码器(Encoder)

多模态大模型的一个关键部分是编码器。编码器的作用是将自然信号编码成统一的表示,便于下游任务处理。例如,视觉编码器将图像信号转换为语义信号,使得语言模型能够高效学习视觉输入。编码器的选择和设计对于模型的性能至关重要。

3.2 语言模型(Language Model)

多模态模型通过语言模型整合不同模态的信息,并基于指令进行分析和推理。语言模型利用其庞大的世界知识,对不同模态的输入进行统一理解,并生成相应的输出。

3.3 解码器(Decoder)

解码器的作用是将语言模型生成的语义信息转换为具体的输出形式,例如图像或语音。当前的技术水平下,专门的解码器能够提供比纯语言模型更高质量的输出。

四、多模态大模型的训练与应用

4.1 多模态预训练

多模态模型的训练过程通常包括预训练和微调阶段。近年来,逐步引入多模态信号进行预训练,让模型能够更早地接触到大规模、多模态的数据,提高模型的泛化能力和应用性能。

4.2 实际应用案例

潘欣在演讲中提到了零一万物的E-Vision系统,该系统基于1.5和34B的语言模型,展示了多模态模型在实际应用中的强大能力。例如,通过对PPT中的视觉元素进行分析,生成图表等。这些应用案例展示了多模态模型在实际场景中的广泛潜力。

五、多模态大模型的未来展望

5.1 长多模态输入与细粒度语义理解

未来,多模态模型将进一步提升对长输入的处理能力,能够理解视频、长文档等复杂输入,并进行细粒度的语义理解。

5.2 长输出的一致性与可控性

在生成长输出时,确保一致性和可控性是一个重要的挑战。例如,在生成长篇故事或视频时,模型需要保持一致的风格和背景,提供连贯的输出。

5.3 多模态预训练的发展

多模态预训练将成为主流,通过更早地引入多模态信号,提高模型的训练效果和应用性能。

结论与未来展望

多模态大模型的发展展示了人工智能技术的巨大潜力。从早期的任务特定单模态模型,到当前的通用多模态模型,技术的不断进步为我们带来了更多的应用场景和可能性。未来,随着多模态预训练的普及和技术的进一步发展,多模态大模型将在更多领域发挥重要作用,推动人工智能技术的进一步发展。
在这里插入图片描述

这篇关于2024 第三届 AIGC 中国开发者大会:多模态大模型的发展与趋势的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023254

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

跨国公司撤出在华研发中心的启示:中国IT产业的挑战与机遇

近日,IBM中国宣布撤出在华的两大研发中心,这一决定在IT行业引发了广泛的讨论和关注。跨国公司在华研发中心的撤出,不仅对众多IT从业者的职业发展带来了直接的冲击,也引发了人们对全球化背景下中国IT产业竞争力和未来发展方向的深思。面对这一突如其来的变化,我们应如何看待跨国公司的决策?中国IT人才又该如何应对?中国IT产业将何去何从?本文将围绕这些问题展开探讨。 跨国公司撤出的背景与

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费