思考伯努利试验的两种组合思想

2024-06-02 06:08

本文主要是介绍思考伯努利试验的两种组合思想,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

思考伯努利试验的两种组合思想

@(概率论)

伯努利试验(Bernoulli experiment)的定义

先从最基本的定义开始思考:
伯努利试验(Bernoulli experiment):是在同样的条件下重复地、相互独立地进行的一种随机试验。其特点是该随机试验只有两种可能结果:发生或者不发生。然后我们假设该项试验独立重复地进行了n次,那么我们就称这一系列重复独立的随机试验为n重伯努利试验,或称为伯努利概型。

要点
1.“在相同条件下”意在说明:每一次试验的结果不会受其它实验结果的影响。事件之间相互独立
2.判断某种试验是否为伯努利试验的关键是:首先,必须是重复的试验,即多次试验,而非一次试验;其次,每次试验的结果同其他各次试验的结果无关,即事件发生的概率没有相互之间的影响。

如果单纯的按照定义出题,那么就是高中的难度了。即只需要简单记忆: XB(n,p),p X只是关注一件事情的发生或不发生。

而在大学难度下,需要的是能够识别事件的组合,抽出多个伯努利概型。

假设是X,Y都是伯努利概型,也即n次试验下,每次发生的概率都是p。在每个变量做n次,能不能两个一起做,这样只需要n次,就暗含了两个伯努利概型呢?是可以的,只需要X,Y是不相容的即可。

我们看一道习题。

(2016-8) 随机试验 E 有三种两两不相容的结果 A1,A2,A3 ,且三种结果发生的概率均为 13 ,将试验 E 独立重复做 2 次, X 表示 2 次试验中结果 A1 发生的次数,Y 表示 2 次试验中结果 A2 发生的次数,则 X 与Y 的相
关系数为 12

分析:随机试验有三种两两不相容的结果。我们站在每一个结果上看问题。每种结果发生的概率是 13 ,不发生的概率就是 23
那么n次试验下,这个结果发生的次数就是伯努利概型。现在是三个结果,且他们不会同时发生,即不相容,因此,这是三个伯努利概型在一次n重试验下的组合。

明白了这一点,问题将非常简单。

XB(2,13)EX=np=23,DX</

这篇关于思考伯努利试验的两种组合思想的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023177

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

关于rpc长连接与短连接的思考记录

《关于rpc长连接与短连接的思考记录》文章总结了RPC项目中长连接和短连接的处理方式,包括RPC和HTTP的长连接与短连接的区别、TCP的保活机制、客户端与服务器的连接模式及其利弊分析,文章强调了在实... 目录rpc项目中的长连接与短连接的思考什么是rpc项目中的长连接和短连接与tcp和http的长连接短

Python读取TIF文件的两种方法实现

《Python读取TIF文件的两种方法实现》本文主要介绍了Python读取TIF文件的两种方法实现,包括使用tifffile库和Pillow库逐帧读取TIFF文件,具有一定的参考价值,感兴趣的可以了解... 目录方法 1:使用 tifffile 逐帧读取安装 tifffile:逐帧读取代码:方法 2:使用

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

Go组合

摘要 golang并非完全面向对象的程序语言,为了实现面向对象的继承这一神奇的功能,golang允许struct间使用匿名引入的方式实现对象属性方法的组合 组合使用注意项 使用匿名引入的方式来组合其他struct 默认优先调用外层方法 可以指定匿名struct以调用内层方法 代码 package mainimport ("fmt")type People struct{}type Pe

android两种日志获取log4j

android   log4j 加载日志使用方法; 先上图: 有两种方式: 1:直接使用架包 加载(两个都要使用); 架包:android-logging-log4j-1.0.3.jar 、log4j-1.2.15.jar  (说明:也可以使用架包:log4j-1.2.17.jar)  2:对架包输入日志的二次封装使用; 1:直接使用 log4j 日志框架获取日志信息: A:配置 日志 文

c++11工厂子类实现自注册的两种方法

文章目录 一、产品类构建1. 猫基类与各品种猫子类2.狗基类与各品种狗子类 二、工厂类构建三、客户端使用switch-case实现调用不同工厂子类四、自注册方法一:公开注册函数显式注册五、自注册方法二:构造函数隐形注册总结 一、产品类构建 1. 猫基类与各品种猫子类 class Cat {public:virtual void Printer() = 0;};class