《机器学习实战》(七)—— AdaBoost(提升树)

2024-06-02 04:38

本文主要是介绍《机器学习实战》(七)—— AdaBoost(提升树),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/u011239443/article/details/77294201

AdaBoost

提升树

例子

将“身体”设为A,“业务”设为B,“潜力”设为C。对该题做大致的求解:

这里我们只计算到了f2,相信读者也知道如何继续往下计算。这里特征的取值较少,所以直接使用是否等于某个取值来作为分支条件。实际中,可以设置是否大于或者小于等于某个阈值来作为分支条件。接下来我们就来看看如何实现提升树。

实现

# -*- coding: utf-8 -*-
from numpy import *# 加载数据
def loadSimpData():datMat = matrix([[ 1. ,  2.1],[ 2. ,  1.1],[ 1.3,  1. ],[ 1. ,  1. ],[ 2. ,  1. ]])classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]return datMat,classLabels# 决策桩分类
# dimen : 选取的特征
# threshVal : 特征的阈值
# threshInseq : 判别大于或者小于等于该阈值
def stumpClassify(dataMat,dimen,threshVal,threshIneq):retArray = ones((shape(dataMat)[0],1))if threshIneq == 'lt':retArray[dataMat[:,dimen] <= threshVal] = -1.0else:retArray[dataMat[:,dimen] > threshVal] = -1.0return retArray#  构建决策树桩
def buildStump(dataArr,classLabels,D):dataMat = mat(dataArr);labelMat = mat(classLabels).Tm,n = shape(dataMat)numSteps = 10.0;bestStump = {};bestClassEst = mat(zeros((m,1)))minError = inffor i in range(n):rangeMin = dataMat[:,i].min();rangeMax = dataMat[:,i].max()stepSize = (rangeMax - rangeMin)/numSteps# 由于是 ‘<= threshVal’,所以要从-1开始,使得出现全都 > threshVal 的情况for j in range(-1,int(numSteps)+1):for inequal in ['lt','gt']:threshVal = rangeMin + j * stepSizepredictedVals = stumpClassify(dataMat,i,threshVal,inequal)errArr = mat(ones((m,1)))errArr[predictedVals == labelMat] = 0weightedError = D.T * errArrif weightedError < minError:minError = weightedErrorbestClassEst = predictedVals.copy()bestStump['dim'] = ibestStump['thresh'] = threshValbestStump['ineq'] = inequalreturn bestStump,minError,bestClassEstdef adaBoostTrainDS(dataArr,classLabels,numIt = 40):# 保存不同的决策树桩weakClassArr = []m = shape(dataArr)[0]# 权值初始化为 1/mD = mat(ones((m,1))/m)aggClassEst = mat(zeros((m,1)))for i in range(numIt):bestStump,error,ClassEst = buildStump(dataArr,classLabels,D)# 见式 8.2alpha = float(0.5*log((1-error)/max(error,1e-16)))bestStump['alpha'] = alphaweakClassArr.append(bestStump)# 见式 8.4expon = multiply(-1*alpha*mat(classLabels).T,ClassEst)D = multiply(D,exp(expon))D = D/D.sum()# 见式 8.6aggClassEst += alpha*ClassEstaggErrors = multiply(sign(aggClassEst) != mat(classLabels).T,ones((m,1)))errorRate = aggErrors.sum()/mprint ("error rate : ",errorRate)if errorRate == 0:breakreturn weakClassArrdef adaClassify(dataToClass,classifierArr):dataMat = mat(dataToClass)m = shape(dataMat)[0]aggClassEst = mat(zeros((m,1)))for i in range(len(classifierArr)):classEst = stumpClassify(dataMat,classifierArr[i]['dim'],\classifierArr[i]['thresh'], \classifierArr[i]['ineq'])# 见式 8.7aggClassEst += classifierArr[i]['alpha']*classEstprint aggClassEstreturn sign(aggClassEst)

测试

import myAdaboostdataMat,classLabels = myAdaboost.loadSimpData()classifierArray = myAdaboost.adaBoostTrainDS(dataMat,classLabels,30)print myAdaboost.adaClassify([0,0],classifierArray)

结果

('error rate : ', 0.20000000000000001)
('error rate : ', 0.20000000000000001)
('error rate : ', 0.0)
[[-0.69314718]]
[[-1.66610226]]
[[-2.56198199]]
[[-1.]]

这里写图片描述

这篇关于《机器学习实战》(七)—— AdaBoost(提升树)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023047

相关文章

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变