《搜索和推荐中的深度匹配》——2.5 延伸阅读

2024-06-02 04:18

本文主要是介绍《搜索和推荐中的深度匹配》——2.5 延伸阅读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

重磅推荐专栏: 《Transformers自然语言处理系列教程》
手把手带你深入实践Transformers,轻松构建属于自己的NLP智能应用!

Query重构是解决搜索中查询文档不匹配的另一种方法,即将Query转换为另一个可以进行更好匹配的Query。Query转换包括Query的拼写错误更正。例如,【1】提出了一种源渠道模型,【2】 提出了一种用于该任务的判别方法。Query转换还包括Query分段【3】【4】【5】。受统计机器翻译 (SMT) 的启发,研究人员还考虑利用翻译技术来处理Query文档不匹配问题,假设Query使用一种语言而文档使用另一种语言。【6】利用基于单词的翻译模型来执行任务。【7】 提出使用基于短语的翻译模型来捕获查询中单词和文档标题之间的依赖关系。主题模型也可用于解决不匹配问题。一种简单而有效的方法是使用term匹配分数和主题匹配分数的线性组合【8】。概率主题模型也用于平滑文档语言模型(或Query语言模型)【9】【10】。 【11】对搜索中语义匹配的传统机器学习方法进行了全面调查。

在推荐方面,除了引入的经典潜在因子模型外,还开发了其他类型的方法。例如,可以使用预先定义的启发式在原始交互空间上进行匹配,例如基于项目的 CF【12】和统一的基于用户和基于项目的 CF【13】。用户-项目交互可以组织为二部图,在该图上执行随机游走以估计任意两个节点(一个用户和一个项目、两个用户或两个项目)之间的相关性【14】【15】。还可以使用概率图模型【16】对用户-项目交互的生成过程进行建模。为了结合各种辅助信息,例如用户配置文件和上下文,除了引入的 FM 模型外,还利用了张量分解【17】和集体矩阵分解【18】。我们向读者推荐了两篇关于传统推荐匹配方法的调查论文【19】【20】。

引文

【1】Brill, E. and R. C. Moore (2000). “An improved error model for noisy channel spelling correction”. In: Proceedings of the 38th Annual Meeting on Association for Computational Linguistics. ACL ’00. Hong Kong: Association for Computational Linguistics. 286–293.
【2】Wang, Z., G. Xu, H. Li, and M. Zhang (2011). “A fast and accurate method for approximate string search”. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies – Volume 1. HLT ’11. Portland, OR, USA: Association for Computational Linguistics. 52–61. url: http://dl.acm.org/citation.cf m?id=2002472.2002480.
【3】Bendersky, M., W. B. Croft, and D. A. Smith (2011). “Joint annotation of search queries”. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies – Volume 1. HLT ’11. Portland, OR, USA: Association for Computational Linguistics. 102–111. url: http://dl.acm.org/ citation.cf m?id=2002472.2002486.
【4】Bergsma, S. and Q. I. Wang (2007). “Learning noun phrase query segmentation”. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computa- tional Natural Language Learning (EMNLP-CoNLL). Prague, Czech Republic: Association for Computational Linguistics. 819–826. url: https://www.aclweb.org/anthology/D07-1086.
【5】Guo, J., G. Xu, H. Li, and X. Cheng (2008). “A unified and discrimina-
tive model for query refinement”. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’08. Singapore, Singapore: ACM. 379–386.
【6】Berger, A. and J. Lafferty (1999). “Information retrieval as statistical translation”. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’99. Berkeley, CA, USA: ACM. 222–229.
【7】Gao, J., J.-Y. Nie, G. Wu, and G. Cao (2004). “Dependence language
model for information retrieval”. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’04. Sheffield, UK: ACM. 170–177.
【8】Hofmann, T. (1999). “Probabilistic latent semantic indexing”. In: Pro- ceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’99. Berkeley, CA, USA: ACM. 50–57.
【9】Wei, X. and W. B. Croft (2006). “LDA-based document models for ad- hoc retrieval”. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’06. Seattle, Washington, DC, USA: ACM. 178– 185.
【10】Yi, X. and J. Allan (2009). “A comparative study of utilizing topic mod- els for information retrieval”. In: Proceedings of the 31th European
Conference on IR Research on Advances in Information Retrieval. ECIR ’09. Toulouse, France: Springer-Verlag. 29–41.
【11】Li.H. and J. Xu (2014). “Semantic matching in search”. Foundations and Trends in Information Retrieval. 7(5): 343–469.
【12】Sarwar, B., G. Karypis, J. Konstan, and J. Riedl (2001). “Item-based collaborative filtering recommendation algorithms”. In: Proceedings of the 10th International Conference on World Wide Web. WWW
’01. Hong Kong, Hong Kong: ACM. 285–295.
【13】Wang, J., A. P. de Vries, and M. J. T. Reinders (2006). “Unifying user- based and item-based collaborative filtering approaches by similarity fusion”. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’06. Seattle, Washington, DC, USA: ACM. 501– 508.
【14】Eksombatchai, C., P. Jindal, J. Z. Liu, Y. Liu, R. Sharma, C. Sugnet, M. Ulrich, and J. Leskovec (2018). “Pixie: A system for recommending 3+ Billion items to 200+ Million users in real-time”. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web,
WWW 2018, Lyon, France. 1775–1784.
【15】He, X., M. Gao, M.-Y. Kan, and D. Wang (2017b). “BiRank: Towards ranking on bipartite graphs”. IEEE Transactions on Knowledge and
Data Engineering. 29(1): 57–71.
【16】Salakhutdinov, R. and A. Mnih (2007). “Probabilistic matrix factor- ization”. In: Proceedings of the 20th International Conference on
Neural Information Processing Systems. NIPS’07. Vancouver, British Columbia, Canada: Curran Associates Inc. 1257–1264. url: http:// dl.acm.org/citation.cf m?id=2981562.2981720.
【17】Karatzoglou, A., X. Amatriain, L. Baltrunas, and N. Oliver (2010). “Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering”. In: Proceedings of the Fourth
ACM Conference on Recommender Systems. RecSys ’10. Barcelona,
Spain: ACM. 79–86.
【18】He, X., M.-Y. Kan, P. Xie, and X. Chen (2014). “Comment-based multi-view clustering of web 2.0 items”. In: Proceedings of the 23rd International Conference on World Wide Web. WWW ’14. Seoul, Korea: ACM. 771–782.
【19】Adomavicius, G. and A. Tuzhilin (2005). “Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions”. IEEE Transactions on Knowledge and Data Engineering. 17(6): 734–749.
【20】Shi, Y., M. Larson, and A. Hanjalic (2014). “Collaborative filtering
beyond the user-item matrix: A survey of the state of the art and
future challenges”. ACM Computing Surveys. 47(1): 3:1–3:45.

这篇关于《搜索和推荐中的深度匹配》——2.5 延伸阅读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023010

相关文章

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

前端 CSS 动态设置样式::class、:style 等技巧(推荐)

《前端CSS动态设置样式::class、:style等技巧(推荐)》:本文主要介绍了Vue.js中动态绑定类名和内联样式的两种方法:对象语法和数组语法,通过对象语法,可以根据条件动态切换类名或样式;通过数组语法,可以同时绑定多个类名或样式,此外,还可以结合计算属性来生成复杂的类名或样式对象,详细内容请阅读本文,希望能对你有所帮助...

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

Java中实现订单超时自动取消功能(最新推荐)

《Java中实现订单超时自动取消功能(最新推荐)》本文介绍了Java中实现订单超时自动取消功能的几种方法,包括定时任务、JDK延迟队列、Redis过期监听、Redisson分布式延迟队列、Rocket... 目录1、定时任务2、JDK延迟队列 DelayQueue(1)定义实现Delayed接口的实体类 (

shell脚本自动删除30天以前的文件(最新推荐)

《shell脚本自动删除30天以前的文件(最新推荐)》该文章介绍了如何使用Shell脚本自动删除指定目录下30天以前的文件,并通过crontab设置定时任务,此外,还提供了如何使用Shell脚本删除E... 目录shell脚本自动删除30天以前的文件linux按照日期定时删除elasticsearch索引s

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操