GEE 10m 全球 LULC 数据集 ESRI Land Cover

2024-06-01 22:44

本文主要是介绍GEE 10m 全球 LULC 数据集 ESRI Land Cover,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

土地利用土地覆盖(LULC)地图在许多行业部门和发展中国家越来越成为决策者的重要工具。这些地图提供的信息有助于通过更好地理解和量化地球过程和人类活动的影响,从而制定政策和土地管理决策。


ESRI Land Cover 数据介绍

ArcGIS Living Atlas of the World 提供了详细、准确且及时的全球 LULC 地图。该数据是 Esri 和 Impact Observatory 合作的结果。有关数据的更多信息,请参阅 Sentinel-2 10 米土地利用/土地覆盖时间序列。

  • 网站访问链接:https://livingatlas.arcgis.com/landcoverexplorer/

  • 土地利用/土地覆盖(LULC)地图的重要性:

    • 土地利用/土地覆盖(LULC)地图是分析师和决策者在政府、民间社会、工业和金融领域中监测全球环境变化和衡量可持续生计与发展的风险时所需的基础地理空间数据产品。对高层次、自动化的地理空间分析产品有着强烈的需求,这些产品能够将像素转化为非地理空间专家可操作的见解。
  • Sentinel-2 卫星的优势:

    • Sentinel-2 卫星自2015年中期首次发射以来,凭借其高空间分辨率、光谱分辨率和时间分辨率,成为 LULC 制图的优秀候选者。深度学习和可扩展的云计算进步如今提供了所需的分析能力,能够解锁全球卫星影像观测的价值。
  • 利用深度学习创建全球 LULC 地图:

    • 基于一个包含超过 50 亿个人工标记 Sentinel-2 像素的全新大型数据集,我们开发并部署了一种深度学习分割模型,以10米分辨率在 Sentinel-2 数据上创建全球 LULC 地图。该地图实现了最先进的精度,并使时间序列观测的自动化 LULC 制图成为可能。

数据研制流程

  • 论文参考链接:https://ieeexplore.ieee.org/document/9553499/

K. Karra, C. Kontgis, Z. Statman-Weil, J. C. Mazzariello, M. Mathis and S. P. Brumby, “Global land use / land cover with Sentinel 2 and deep learning,” 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021, pp. 4704-4707, doi: 10.1109/IGARSS47720.2021.9553499. keywords: {Deep learning;Industries;Image segmentation;Satellites;Time series analysis;Government;Geoscience and remote sensing;land use land cover;deep learning;segmentation;Sentinel 2},

1 训练数据

  1. 全球、地理平衡的训练数据集

    • 使用了超过 24,000 个 5 公里 × 5 公里的图像片段。
    • 图像片段被手工标记为十个类别:水、树木、草、被淹没的植被、农作物、灌木丛/灌木丛、建筑区域、裸露地面、雪/冰和云。
    • 数据集采用随机分层抽样方法,从 14 个主要生物群落中收集。
  2. 密集标记方法

    • 注释者使用密集标记方法代替单像素标签。
    • 在场景中的各个要素类周围绘制矢量边界。
    • 密集标记使深度学习算法能够探索图像的空间和光谱特征,并且比单像素注释更快地恢复每个像素的标签。

2. 模型开发

  1. UNet 模型训练

    • 使用上述手工标记数据,从头训练了一个大型 UNet 模型。
      • UNet 是一种卷积神经网络架构,最初为生物医学图像分割而开发,也被证明在卫星图像的语义分割任务中有效。
  2. 分割任务

    • 将分割任务表述为一个逐像素分类问题。
    • 包含前述的十个类别以及一个针对未标记像素的额外“无数据”类别。
    • 利用分类交叉熵损失函数,并使用基于每个类别百分比比例的逆对数加权来处理数据集中的类别不平衡问题。

  1. 使用的 Sentinel-2 波段

    • 使用 Sentinel-2 L2A 表面反射校正影像的六个波段(红、绿、蓝、nir、swir1、swir2)。
    • 每个波段都转换为浮点数并在 0 和 1 之间缩放。
  2. 数据增强

    • 通过随机垂直和水平翻转图像进行数据增强。
    • 这样可以引入更多地理模式变化。
  3. 防止过度拟合

    • 在训练期间采用 dropout 技术,在每个批次中随机关闭 UNet 中 20% 的神经元。
      • dropout:一种防止神经网络过度拟合的技术,通过随机丢弃神经元来实现。
  4. 训练过程

    • 该模型经过 100 个 epoch 的训练才收敛。
      • epoch:机器学习中完成一次训练数据集迭代的过程。
    • 采用阶梯式学习率,在验证损失趋于稳定后,学习率会下降一个数量级。

结果表明,借助强大的训练数据集和深度学习模型,可以创建分辨率为 10 米的全球一致的 LULC 地图。我们的模型在十个类别中实现了 85% 的整体准确度,并且考虑到主要混淆因素具有直观意义,我们相信全球地图具有科学依据且实用。未来仍有几个有希望的改进途径。例如,包括 Sentinel-1 辐射校正地面范围检测 (GRD) 数据可以帮助处理所有类别,特别是在区分被淹没的植被与农田以及裸露与灌木丛/灌木方面。此外,添加时间序列特征(如一年内植被健康状况的测量值)可以区分草地、农作物和灌木丛/灌木。
对于表现较差的类别(例如草地、被淹没的植被),额外收集手工标记的训练数据以提供更多跨地域的此类示例可能会提高准确率。我们还计划试验模型架构、类别权重和其他数据增强技术,以提高模型性能和泛化能力。


GEE 使用数据集

以武汉为显示中心,ESRI Global-LULC 10m显示如下:

完整代码

// 加载 ESRI Land Cover 数据集
var esri_lulc10 = ee.ImageCollection("projects/sat-io/open-datasets/landcover/ESRI_Global-LULC_10m");// 设置可视化参数
var visualization = {bands: ['b1'],min: 1,max: 10,palette: ['1A5BAB', // 水'358221', // 树木'A7D282', // 草'87D19E', // 被淹没的植被'FFDB5C', // 农作物'EECFA8', // 灌木丛/灌木丛'ED022A', // 建筑区域'EDE9E4', // 裸露地面'F2FAFF', // 雪/冰'C8C8C8'  // 云]
};// 定义武汉的区域
var wuhan = ee.Geometry.Rectangle([113.6938, 29.9701, 115.0227, 31.2198]);// 裁剪函数
function clip(image) {return image.clip(wuhan);
}// 裁剪数据集
var clippedEsriLulc10 = esri_lulc10.map(clip);// 将裁剪后的 ESRI Land Cover 数据集添加到地图
Map.addLayer(clippedEsriLulc10.mosaic(), visualization, 'ESRI Land Cover - Wuhan');// 设置地图中心和缩放级别以显示湖北武汉
Map.setCenter(114.3055, 30.5928, 10); // 经度、纬度、缩放级别

代码说明

  1. 加载数据集

    var esri_lulc10 = ee.ImageCollection("projects/sat-io/open-datasets/landcover/ESRI_Global-LULC_10m");
    

    使用 ee.ImageCollection 函数加载 ESRI Land Cover 数据集。

  2. 设置可视化参数

    var visualization = {bands: ['b1'],min: 1,max: 10,palette: ['1A5BAB', // 水'358221', // 树木'A7D282', // 草'87D19E', // 被淹没的植被'FFDB5C', // 农作物'EECFA8', // 灌木丛/灌木丛'ED022A', // 建筑区域'EDE9E4', // 裸露地面'F2FAFF', // 雪/冰'C8C8C8'  // 云]
    };
    

    设置显示图层的波段、颜色范围和颜色调色板。

  3. 定义武汉的区域

    var wuhan = ee.Geometry.Rectangle([113.6938, 29.9701, 115.0227, 31.2198]);
    

    使用 ee.Geometry.Rectangle 函数定义武汉的区域。

  4. 裁剪函数

    function clip(image) {return image.clip(wuhan);
    }
    

    定义一个裁剪函数,将图像裁剪到武汉区域。

  5. 裁剪数据集

    var clippedEsriLulc10 = esri_lulc10.map(clip);
    

    使用 map 函数对数据集进行裁剪。

  6. 将裁剪后的数据集添加到地图

    Map.addLayer(clippedEsriLulc10.mosaic(), visualization, 'ESRI Land Cover - Wuhan');
    

    使用 Map.addLayer 函数将裁剪后的数据集添加到地图。

  7. 设置地图中心和缩放级别

    Map.setCenter(114.3055, 30.5928, 10);
    

    使用 Map.setCenter 函数设置地图中心为湖北武汉的经度(114.3055)和纬度(30.5928),缩放级别为 10。

ESRI Land Cover数据集是一个强大的资源,它在GEE平台上的应用为研究人员和决策者提供了深入洞察地球表面变化的能力。通过本博客的介绍,可以开始在GEE中探索和分析ESRI Land Cover数据集,以支持研究和项目。

如果这对您有所帮助,希望点赞支持一下作者! 😊

点击查看原文

file

这篇关于GEE 10m 全球 LULC 数据集 ESRI Land Cover的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022305

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav