GEE 10m 全球 LULC 数据集 ESRI Land Cover

2024-06-01 22:44

本文主要是介绍GEE 10m 全球 LULC 数据集 ESRI Land Cover,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

土地利用土地覆盖(LULC)地图在许多行业部门和发展中国家越来越成为决策者的重要工具。这些地图提供的信息有助于通过更好地理解和量化地球过程和人类活动的影响,从而制定政策和土地管理决策。


ESRI Land Cover 数据介绍

ArcGIS Living Atlas of the World 提供了详细、准确且及时的全球 LULC 地图。该数据是 Esri 和 Impact Observatory 合作的结果。有关数据的更多信息,请参阅 Sentinel-2 10 米土地利用/土地覆盖时间序列。

  • 网站访问链接:https://livingatlas.arcgis.com/landcoverexplorer/

  • 土地利用/土地覆盖(LULC)地图的重要性:

    • 土地利用/土地覆盖(LULC)地图是分析师和决策者在政府、民间社会、工业和金融领域中监测全球环境变化和衡量可持续生计与发展的风险时所需的基础地理空间数据产品。对高层次、自动化的地理空间分析产品有着强烈的需求,这些产品能够将像素转化为非地理空间专家可操作的见解。
  • Sentinel-2 卫星的优势:

    • Sentinel-2 卫星自2015年中期首次发射以来,凭借其高空间分辨率、光谱分辨率和时间分辨率,成为 LULC 制图的优秀候选者。深度学习和可扩展的云计算进步如今提供了所需的分析能力,能够解锁全球卫星影像观测的价值。
  • 利用深度学习创建全球 LULC 地图:

    • 基于一个包含超过 50 亿个人工标记 Sentinel-2 像素的全新大型数据集,我们开发并部署了一种深度学习分割模型,以10米分辨率在 Sentinel-2 数据上创建全球 LULC 地图。该地图实现了最先进的精度,并使时间序列观测的自动化 LULC 制图成为可能。

数据研制流程

  • 论文参考链接:https://ieeexplore.ieee.org/document/9553499/

K. Karra, C. Kontgis, Z. Statman-Weil, J. C. Mazzariello, M. Mathis and S. P. Brumby, “Global land use / land cover with Sentinel 2 and deep learning,” 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021, pp. 4704-4707, doi: 10.1109/IGARSS47720.2021.9553499. keywords: {Deep learning;Industries;Image segmentation;Satellites;Time series analysis;Government;Geoscience and remote sensing;land use land cover;deep learning;segmentation;Sentinel 2},

1 训练数据

  1. 全球、地理平衡的训练数据集

    • 使用了超过 24,000 个 5 公里 × 5 公里的图像片段。
    • 图像片段被手工标记为十个类别:水、树木、草、被淹没的植被、农作物、灌木丛/灌木丛、建筑区域、裸露地面、雪/冰和云。
    • 数据集采用随机分层抽样方法,从 14 个主要生物群落中收集。
  2. 密集标记方法

    • 注释者使用密集标记方法代替单像素标签。
    • 在场景中的各个要素类周围绘制矢量边界。
    • 密集标记使深度学习算法能够探索图像的空间和光谱特征,并且比单像素注释更快地恢复每个像素的标签。

2. 模型开发

  1. UNet 模型训练

    • 使用上述手工标记数据,从头训练了一个大型 UNet 模型。
      • UNet 是一种卷积神经网络架构,最初为生物医学图像分割而开发,也被证明在卫星图像的语义分割任务中有效。
  2. 分割任务

    • 将分割任务表述为一个逐像素分类问题。
    • 包含前述的十个类别以及一个针对未标记像素的额外“无数据”类别。
    • 利用分类交叉熵损失函数,并使用基于每个类别百分比比例的逆对数加权来处理数据集中的类别不平衡问题。

  1. 使用的 Sentinel-2 波段

    • 使用 Sentinel-2 L2A 表面反射校正影像的六个波段(红、绿、蓝、nir、swir1、swir2)。
    • 每个波段都转换为浮点数并在 0 和 1 之间缩放。
  2. 数据增强

    • 通过随机垂直和水平翻转图像进行数据增强。
    • 这样可以引入更多地理模式变化。
  3. 防止过度拟合

    • 在训练期间采用 dropout 技术,在每个批次中随机关闭 UNet 中 20% 的神经元。
      • dropout:一种防止神经网络过度拟合的技术,通过随机丢弃神经元来实现。
  4. 训练过程

    • 该模型经过 100 个 epoch 的训练才收敛。
      • epoch:机器学习中完成一次训练数据集迭代的过程。
    • 采用阶梯式学习率,在验证损失趋于稳定后,学习率会下降一个数量级。

结果表明,借助强大的训练数据集和深度学习模型,可以创建分辨率为 10 米的全球一致的 LULC 地图。我们的模型在十个类别中实现了 85% 的整体准确度,并且考虑到主要混淆因素具有直观意义,我们相信全球地图具有科学依据且实用。未来仍有几个有希望的改进途径。例如,包括 Sentinel-1 辐射校正地面范围检测 (GRD) 数据可以帮助处理所有类别,特别是在区分被淹没的植被与农田以及裸露与灌木丛/灌木方面。此外,添加时间序列特征(如一年内植被健康状况的测量值)可以区分草地、农作物和灌木丛/灌木。
对于表现较差的类别(例如草地、被淹没的植被),额外收集手工标记的训练数据以提供更多跨地域的此类示例可能会提高准确率。我们还计划试验模型架构、类别权重和其他数据增强技术,以提高模型性能和泛化能力。


GEE 使用数据集

以武汉为显示中心,ESRI Global-LULC 10m显示如下:

完整代码

// 加载 ESRI Land Cover 数据集
var esri_lulc10 = ee.ImageCollection("projects/sat-io/open-datasets/landcover/ESRI_Global-LULC_10m");// 设置可视化参数
var visualization = {bands: ['b1'],min: 1,max: 10,palette: ['1A5BAB', // 水'358221', // 树木'A7D282', // 草'87D19E', // 被淹没的植被'FFDB5C', // 农作物'EECFA8', // 灌木丛/灌木丛'ED022A', // 建筑区域'EDE9E4', // 裸露地面'F2FAFF', // 雪/冰'C8C8C8'  // 云]
};// 定义武汉的区域
var wuhan = ee.Geometry.Rectangle([113.6938, 29.9701, 115.0227, 31.2198]);// 裁剪函数
function clip(image) {return image.clip(wuhan);
}// 裁剪数据集
var clippedEsriLulc10 = esri_lulc10.map(clip);// 将裁剪后的 ESRI Land Cover 数据集添加到地图
Map.addLayer(clippedEsriLulc10.mosaic(), visualization, 'ESRI Land Cover - Wuhan');// 设置地图中心和缩放级别以显示湖北武汉
Map.setCenter(114.3055, 30.5928, 10); // 经度、纬度、缩放级别

代码说明

  1. 加载数据集

    var esri_lulc10 = ee.ImageCollection("projects/sat-io/open-datasets/landcover/ESRI_Global-LULC_10m");
    

    使用 ee.ImageCollection 函数加载 ESRI Land Cover 数据集。

  2. 设置可视化参数

    var visualization = {bands: ['b1'],min: 1,max: 10,palette: ['1A5BAB', // 水'358221', // 树木'A7D282', // 草'87D19E', // 被淹没的植被'FFDB5C', // 农作物'EECFA8', // 灌木丛/灌木丛'ED022A', // 建筑区域'EDE9E4', // 裸露地面'F2FAFF', // 雪/冰'C8C8C8'  // 云]
    };
    

    设置显示图层的波段、颜色范围和颜色调色板。

  3. 定义武汉的区域

    var wuhan = ee.Geometry.Rectangle([113.6938, 29.9701, 115.0227, 31.2198]);
    

    使用 ee.Geometry.Rectangle 函数定义武汉的区域。

  4. 裁剪函数

    function clip(image) {return image.clip(wuhan);
    }
    

    定义一个裁剪函数,将图像裁剪到武汉区域。

  5. 裁剪数据集

    var clippedEsriLulc10 = esri_lulc10.map(clip);
    

    使用 map 函数对数据集进行裁剪。

  6. 将裁剪后的数据集添加到地图

    Map.addLayer(clippedEsriLulc10.mosaic(), visualization, 'ESRI Land Cover - Wuhan');
    

    使用 Map.addLayer 函数将裁剪后的数据集添加到地图。

  7. 设置地图中心和缩放级别

    Map.setCenter(114.3055, 30.5928, 10);
    

    使用 Map.setCenter 函数设置地图中心为湖北武汉的经度(114.3055)和纬度(30.5928),缩放级别为 10。

ESRI Land Cover数据集是一个强大的资源,它在GEE平台上的应用为研究人员和决策者提供了深入洞察地球表面变化的能力。通过本博客的介绍,可以开始在GEE中探索和分析ESRI Land Cover数据集,以支持研究和项目。

如果这对您有所帮助,希望点赞支持一下作者! 😊

点击查看原文

file

这篇关于GEE 10m 全球 LULC 数据集 ESRI Land Cover的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022305

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram