GiantPandaCV | FasterTransformer Decoding 源码分析(六)-CrossAttention介绍

本文主要是介绍GiantPandaCV | FasterTransformer Decoding 源码分析(六)-CrossAttention介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文来源公众号“GiantPandaCV”,仅用于学术分享,侵权删,干货满满。

原文链接:FasterTransformer Decoding 源码分析(六)-CrossAttention介绍

GiantPandaCV | FasterTransformer Decoding 源码分析(一)-整体框架介绍-CSDN博客

GiantPandaCV | FasterTransformer Decoding 源码分析(二)-Decoder框架介绍-CSDN博客

GiantPandaCV | FasterTransformer Decoding 源码分析(三)-LayerNorm介绍-CSDN博客

GiantPandaCV | FasterTransformer Decoding 源码分析(四)-SelfAttention实现介绍-CSDN博客

GiantPandaCV | FasterTransformer Decoding 源码分析(五)-AddBiasResidualLayerNorm介绍-CSDN博客

作者丨进击的Killua

来源丨https://zhuanlan.zhihu.com/p/670739629

编辑丨GiantPandaCV

本文是FasterTransformer Decoding源码分析的第六篇,笔者试图去分析CrossAttention部分的代码实现和优化。由于CrossAttention和SelfAttention计算流程上类似,所以在实现上FasterTransformer使用了相同的底层Kernel函数,因此会有大量重复的概念和优化点,重复部分本文就不介绍了,所以在阅读本文前务必先浏览进击的Killua:FasterTransformer Decoding 源码分析(四)-SelfAttention实现介绍这篇文章,一些共性的地方会在这篇文章中做统一介绍,本文着重介绍区别点。

一、模块介绍

如下图所示,CrossAttention模块位于DecoderLayer的第4个模块,输入为经过LayerNorm后的SelfAttention结果和encoder的outputs,经过该模块处理后进行残差连接再输入LayerNorm中。

CrossAttention在decoder中的位置

CrossAttention模块本质上还是要实现如下几个公式,主要的区别在于其中 CrossAttention 的K, V矩阵不是使用 上一个 Decoder block的输出或inputs计算的,而是使用Encoder 的编码信息矩阵计算的,这里还是把公式放出来展示下。

crossAttention 公式

二、设计&优化

整体Block和Thread的执行模型还是和SelfAttention的保持一致,这里不再赘述,主要介绍一下有一些区别的KV Cache。

1. KV Cache

由于在CrossAttention中K,V矩阵是来自于已经计算完成的Encoder输出,所以KV Cache的程度会更大,即第一次运算把KV计算出来之后,后续只要读取Cache即可,不需要用本step的输入再进行线性变换得到增量的部分K,V,如下图所示。

三、源码分析

1. 方法入口

CrossAttention的调用入口如下,解释下这里的输入和输出,具体逻辑在后面。

输入Tensor

  1. input_query:normalize之后的SelfAttention输出,大小是[batch_size,hidden_units_]

  2. encoder_output: encoder模块的输出,大小是[batch_size, mem_max_seq_len, memory_hidden_dimension]

  3. encoder_sequence_length:每个句子的长度,大小是[batch_size]

  4. finished: 解码是否结束的标记,大小是[batch_size]

  5. step: 当前解码的步数

输出Tensor

  1. hidden_features:CrossAttention的输出feature,大小是[batch_size,hidden_units_],和input_query大小一致。

  2. key_cache:CrossAttention中存储key的cache,用于后续step的计算。

  3. value_cache: CrossAttention中存储Value的cache,用于后续step的计算。

        TensorMap cross_attention_input_tensors{{"input_query", Tensor{MEMORY_GPU, data_type, {batch_size, hidden_units_}, normed_self_attn_output_}},{"encoder_output", input_tensors->at(1)},{"encoder_sequence_length", input_tensors->at(2)},{"finished", input_tensors->at(3)},{"step", input_tensors->at(4)}}; TensorMap cross_attention_output_tensors{{"hidden_features", Tensor{MEMORY_GPU, data_type, {batch_size, hidden_units_}, cross_attn_output_}},{"key_cache",Tensor{MEMORY_GPU,data_type,std::vector<size_t>(output_tensors->at(3).shape.begin() + 1, output_tensors->at(3).shape.end()),output_tensors->at(3).getPtrWithOffset<T>(mem_cache_offset)}},{"value_cache",Tensor{MEMORY_GPU,data_type,std::vector<size_t>(output_tensors->at(4).shape.begin() + 1, output_tensors->at(4).shape.end()),output_tensors->at(4).getPtrWithOffset<T>(mem_cache_offset)}}};cross_attention_layer_->forward(&cross_attention_output_tensors,&cross_attention_input_tensors,&decoder_layer_weight->at(l).cross_attention_weights);

2. 主体框架

主体框架代码由三部分构成,分别是该step的QKV生成、output生成和Linear输出。其中第一部分和第三部分都使用了cublas的封装矩阵乘方法gemm,这里就不多介绍了,主要功能逻辑在第二部分output生成。

第一部分:QKV生成

如上所述,代码中Q矩阵是需要每个step生成的,而KV矩阵只有第一个step需要生成,后续步骤读取cache即可。

    cublas_wrapper_->Gemm(CUBLAS_OP_N,CUBLAS_OP_N,hidden_units_,  // n                          batch_size,d_model_,  // k                          attention_weights->query_weight.kernel,hidden_units_,  // n                          attention_input,d_model_,  // k                          q_buf_,hidden_units_ /* n */);if (step == 1) {cublas_wrapper_->Gemm(CUBLAS_OP_N,CUBLAS_OP_N,hidden_units_,batch_size * mem_max_seq_len,encoder_output_tensor.shape[2],attention_weights->key_weight.kernel,hidden_units_,encoder_output_tensor.getPtr<T>(),encoder_output_tensor.shape[2],key_mem_cache,hidden_units_);cublas_wrapper_->Gemm(CUBLAS_OP_N,CUBLAS_OP_N,hidden_units_,batch_size * mem_max_seq_len,encoder_output_tensor.shape[2],attention_weights->value_weight.kernel,hidden_units_,encoder_output_tensor.getPtr<T>(),encoder_output_tensor.shape[2],value_mem_cache,hidden_units_);}

第二部分:output生成

核心函数调用,这里参数较多不一一介绍了,非常多(像一些has_ia3等参数应该是在不断迭代的过程中加入的),在后面函数实现中会将重点参数进行阐述。

    cross_attention_dispatch<T>(q_buf_,attention_weights->query_weight.bias,key_mem_cache,attention_weights->key_weight.bias,value_mem_cache,attention_weights->value_weight.bias,memory_sequence_length,context_buf_,finished,batch_size,batch_size,head_num_,size_per_head_,step,mem_max_seq_len,is_batch_major_cache_,q_scaling_,output_attention_param,has_ia3 ? input_tensors->at("ia3_tasks").getPtr<const int>() : nullptr,has_ia3 ? attention_weights->ia3_key_weight.kernel : nullptr,has_ia3 ? attention_weights->ia3_value_weight.kernel : nullptr,stream_);

第三部分:Linear输出

这里就是简单地对上步输出结果乘以一个权重矩阵。

    cublas_wrapper_->Gemm(CUBLAS_OP_N,CUBLAS_OP_N,d_model_,  // nbatch_size,hidden_units_,  // kattention_weights->attention_output_weight.kernel,d_model_,  // ncontext_buf_,hidden_units_,  // kattention_out,d_model_ /* n */);

3. kernel函数调用

上述output生成步骤中会调用如下代码,这里针对每个head中需要处理的层数进行了分类,这个也是大量优化中的常用方案,针对不同的入参大小选择不同size和配置的kernel函数进行处理,这里有经验的一些成分在里面,我们常用的case是hidden_size_per_head=64(head=8)的情况。

template<typename T, typename KERNEL_PARAMS_TYPE>void multihead_attention_(const KERNEL_PARAMS_TYPE& params, const cudaStream_t& stream){switch (params.hidden_size_per_head) {case 32:mmha_launch_kernel<T, 32, 32, KERNEL_PARAMS_TYPE>(params, stream);break;case 48:mmha_launch_kernel<T, 48, 64, KERNEL_PARAMS_TYPE>(params, stream);break;case 64:mmha_launch_kernel<T, 64, 64, KERNEL_PARAMS_TYPE>(params, stream);break;case 80:mmha_launch_kernel<T, 80, 128, KERNEL_PARAMS_TYPE>(params, stream);break;case 96:mmha_launch_kernel<T, 96, 128, KERNEL_PARAMS_TYPE>(params, stream);break;case 112:mmha_launch_kernel<T, 112, 128, KERNEL_PARAMS_TYPE>(params, stream);break;case 128:mmha_launch_kernel<T, 128, 128, KERNEL_PARAMS_TYPE>(params, stream);break;case 144:mmha_launch_kernel<T, 144, 256, KERNEL_PARAMS_TYPE>(params, stream);break;case 160:mmha_launch_kernel<T, 160, 256, KERNEL_PARAMS_TYPE>(params, stream);break;case 192:mmha_launch_kernel<T, 192, 256, KERNEL_PARAMS_TYPE>(params, stream);break;case 224:mmha_launch_kernel<T, 224, 256, KERNEL_PARAMS_TYPE>(params, stream);break;case 256:mmha_launch_kernel<T, 256, 256, KERNEL_PARAMS_TYPE>(params, stream);break;default:assert(false);}}

4. kernel函数实现

这个函数和SelfAttention中的kernel函数是同一个,流程如图所示,这里只介绍下区别点。

1. CrossAttention中只有第一个step需要将KV存入Cache,其他step不需要。

        const bool handle_kv = !DO_CROSS_ATTENTION || (DO_CROSS_ATTENTION && params.timestep == 0);if (handle_kv) {// Trigger the stores to global memory.            if (Dh == Dh_MAX || co < Dh / QK_ELTS_IN_16B) {*reinterpret_cast<Qk_vec_m*>(&params.k_cache[offset]) = vec_conversion<Qk_vec_m, Qk_vec_k>(k);}}

2. 处理本轮step的KV时,也是从cache中取得KV,无需进行本轮计算得到增量KV。

    if (DO_CROSS_ATTENTION) {// The 16B chunk written by the thread.        int co = tidx / QK_VECS_IN_16B;// The position of the thread in that 16B chunk.        int ci = tidx % QK_VECS_IN_16B * QK_VEC_SIZE;// Two chunks are separated by L * x elements. A thread write QK_VEC_SIZE elements.        int offset = bhi * params.memory_max_len * Dh + co * params.memory_max_len * QK_ELTS_IN_16B +// params.timestep*QK_ELTS_IN_16B +                     tlength * QK_ELTS_IN_16B + ci;k = !is_masked && (Dh == Dh_MAX || tidx * QK_VEC_SIZE < Dh) ?vec_conversion<Qk_vec_k, Qk_vec_m>(*reinterpret_cast<const Qk_vec_m*>(&params.k_cache[offset])) :k;}else {if (params.int8_mode == 2) {using Packed_Int8_t  = typename packed_type<int8_t, num_elems<Qk_vec_m>::value>::type;using Packed_Float_t = typename packed_type<float, num_elems<Qk_vec_m>::value>::type;const auto k_scaling = params.qkv_scale_out[1];const auto k_quant =*reinterpret_cast<const Packed_Int8_t*>(&reinterpret_cast<const int8_t*>(params.k)[qk_offset]);convert_from_float(k, mul<Packed_Float_t, float>(k_scaling, float_from_int8(k_quant)));}else {k = !is_masked && (Dh == Dh_MAX || tidx * QK_VEC_SIZE < Dh) ?vec_conversion<Qk_vec_k, Qk_vec_m>(*reinterpret_cast<const Qk_vec_m*>(&params.k[qk_offset])) :k;}}if (DO_CROSS_ATTENTION) {v = vec_conversion<V_vec_k, V_vec_m>(*reinterpret_cast<const V_vec_m*>(&v_cache[tlength * Dh]));}

四、总结

本文相对简单,分析了FasterTransformer中CrossAttention模块的设计方法和代码实现,和SelfAttention基本一致,只是对KV Cache的处理细节上有一点区别,整体上看缓存的使用会比SelfAttention多一些,所以速度应该还会快一点。

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

这篇关于GiantPandaCV | FasterTransformer Decoding 源码分析(六)-CrossAttention介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022094

相关文章

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python实现NLP的完整流程介绍

《Python实现NLP的完整流程介绍》这篇文章主要为大家详细介绍了Python实现NLP的完整流程,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 编程安装和导入必要的库2. 文本数据准备3. 文本预处理3.1 小写化3.2 分词(Tokenizatio

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结