本文主要是介绍UVA 11651 - Krypton Number System(DP+矩阵快速幂),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
UVA 11651 - Krypton Number System
题目链接
题意:给一个进制base,一个分数score求该进制下,有多少数满足一下条件:
1、没有连续数字
2、没有前导零
3、分数为score,分数的计算方式为相邻数字的平方差的和
思路:先从dp入手,dp[i][j]表示组成i,最后一个数字为j的种数,然后进行状态转移,推出前面一步能构成的状态,也就是到dp[(b - 1) * (b - 1)][x]。
然后可以发现后面的状态,都可以由前面这些状态统一转移出来,这样就可以利用矩阵快速幂进行优化,时间复杂度为O(n^3log(score))
这题矩阵快速幂姿势不够优美还会超时,矩阵相乘时候需要优化
代码:
#include <cstdio>
#include <cstring>typedef unsigned long long ll;
const int N = 155;
const ll MOD = (1ULL<<32);int n;struct Mat {ll v[N][N];Mat() {memset(v, 0, sizeof(v));}void init() {memset(v, 0, sizeof(v));}void init_one() {memset(v, 0, sizeof(v));for (int i = 0; i < n; i++)v[i][i] = 1;}Mat operator * (Mat c) {Mat ans;for (int k = 0; k < n; k++) {for (int i = 0; i < n; i++) {if (!v[i][k]) continue;for (int j = 0; j < n; j++)ans.v[i][j] = (ans.v[i][j] + v[i][k] * c.v[k][j] % MOD) % MOD;}}return ans;}
} B;Mat pow_mod(Mat x, int k) {Mat ans;ans.init_one();while (k) {if (k&1) ans = ans * x;x = x * x;k >>= 1;}return ans;
}ll dp[40][10], A[N];
int t, b, s, m;void init() {scanf("%d%d", &b, &s);m = (b - 1) * (b - 1);n = m * b;memset(dp, 0, sizeof(dp));for (int i = 0; i < b; i++)dp[0][i] = 1;for (int i = 1; i <= m; i++) {for (int j = 0; j < b; j++) {for (int k = 0; k < b; k++) {if (k == j) continue;int tmp = (k - j) * (k - j);if (i - tmp < 0) continue;dp[i][j] = (dp[i][j] + dp[i - tmp][k]) % MOD;}}}
}void build() {B.init();for (int i = b; i < n; i++)B.v[i][i - b] = 1;for (int i = 1; i <= m; i++) {for (int j = 0; j < b; j++) {for (int k = 0; k < b; k++) {if (j == k) continue;if (i + (k - j) * (k - j) == m + 1) {B.v[(i - 1) * b + j][n - b + k] = 1;}}}}
}ll solve() {ll ans = 0;if (s <= m) {for (int i = 1; i < b; i++)ans = (ans + dp[s][i]) % MOD;return ans;}for (int i = 1; i <= m; i++) {for (int j = 0; j < b; j++)A[(i - 1) * b + j] = dp[i][j];}build();B = pow_mod(B, s - m);for (int i = n - b + 1; i < n; i++) {for (int j = 0; j < n; j++)ans = (ans + A[j] * B.v[j][i] % MOD) % MOD;}return ans;
}int main() {int cas = 0;scanf("%d", &t);while (t--) {init();printf("Case %d: %llu\n", ++cas, solve());}return 0;
}
这篇关于UVA 11651 - Krypton Number System(DP+矩阵快速幂)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!