机器学习-利用信息熵来学习如果分辨好西瓜

2024-06-01 16:48

本文主要是介绍机器学习-利用信息熵来学习如果分辨好西瓜,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。

我们通常用Entropy(信息熵来度量划分的凌乱程度)。

H(X)=-\sum_{x\varepsilon X}^{}P(x)logP(x))

Ent(D)越小,则信息熵的复杂程度越低,D的纯度(一种刻画信息熵度量的单位)越高。而信息增益则是直接以信息熵为基础,刻画当前划分对信息熵所造成的变化。这个方法主要应用在ID3模型中。

离散属性a的取值\left \{ \right a^{1},a^{2},a^{3},...a^{V}\}:

D^{v}:D中在a上取值=a^{v}的样本集合

以属性a对数据集D进行划分所获得的信息增益为:

Gain(D,a)=Ent(D)-\sum_{V=1}^{V}\frac{\left |(D^{V}\right |}{\left |D\right |}Ent(D^{v})

讲到这里我们引入一个西瓜数据集来说明计算机是如何根据西瓜的特征学习并判断一个西瓜的好坏。

这个数据集里面包含了17个训练样例,有两个结果类别,好瓜和坏瓜。好瓜比例为\frac{8}{17},坏瓜比例为\frac{9}{17},则根节点的信息熵为

Ent(D)=-\sum_{k=1}^{2}p$_{k}$log$_{2}$$^{p}}$=0.998

现在我们可以选择分类的属性有色泽、根蒂、敲声、纹理、脐部、触感,那么哪一个属性的重要性更高了,这里我们用信息熵增益来判断以哪种属性进行分类会更好。

这里以色泽为例:共分为三类{青绿、浅白、乌黑}分别对应D1,D2,D3,子集D1中包括了{1,4,6,10,13,17}6个实例,其中好瓜占比0.5,坏瓜占比0.5,D2,D3同理可求,Ent(D1)=1.000,Ent(D2)=0.918,Ent(D3)=0.722,代入属性“色泽”的信息增益为

Gain(D,attr1)=Ent(D)-\sum_{v=1}^{3}\frac{\left|D_{v}\right|}{\left|D\right|}Ent(D_{v})=0.109

同上,Gain(D,根蒂)=0.143,Gain(D,敲声)=0.141,Gain(D,纹理)=0.381,Gain(D,脐部)=0.289,Gain(D,触感)=0.006

在这里纹理的信息熵增益最大,故因被选为划分属性,然后进一步对每个分支节点做进一步划分,最终形成决策树。下面我们借助DecisionTreeClassifier来完成西瓜模型的建立。

import pandas as pd
from sklearn import model_selection
data=pd.read_csv('./watermelon.csv',encoding='gbk')#读取用excel表格处理的西瓜数据,需要使用微软自带的gbk编码,不然会出问题
features=['色泽','根蒂','敲声','纹理','脐部','触感']#获取csv里面的属性
x=data[features]#相关属性
y=data['好瓜']#结果
def load_data():return model_selection.train_test_split(x,y,test_size=0.3,random_state=0)
x_train,x_test,y_train,y_test=load_data()
#接下来需要把特征向量化
from sklearn.feature_extraction import DictVectorizer
dict_vec=DictVectorizer(sparse=False)
x_train=dict_vec.fit_transform(x_train.to_dict(orient='record'))
x_test=dict_vec.fit_transform(x_test.to_dict(orient='record'))
print(dict_vec.feature_names_)
from sklearn.tree import DecisionTreeClassifier,export_graphviz
clf=DecisionTreeClassifier(criterion='entropy')#用信息熵来建立树模型ID3
clf.fit(x_train,y_train)#训练模型
print(clf.score(x_train,y_train))#结果1.0,过拟合,这里数据比较少
#print(clf.score(x_test,y_test))
export_graphviz(clf,'/home/jovyan/out')
print(x_train.info())

out:

['敲声=沉闷', '敲声=浊响', '敲声=清脆', '根蒂=硬挺', '根蒂=稍蜷', '根蒂=蜷缩', '纹理=清晰', '纹理=稍糊', '脐部=凹陷', '脐部=平坦', '脐部=稍凹', '色泽=乌黑', '色泽=浅白', '色泽=青绿', '触感=硬滑', '触感=软粘']
1.0

这里绘制对应的决策树如下:

这篇关于机器学习-利用信息熵来学习如果分辨好西瓜的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1021564

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件