数据分析案例一使用Python进行红酒与白酒数据数据分析

2024-06-01 13:04

本文主要是介绍数据分析案例一使用Python进行红酒与白酒数据数据分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

源码和数据集链接

以红葡萄酒为例

有两个样本:
winequality-red.csv:红葡萄酒样本
winequality-white.csv:白葡萄酒样本
每个样本都有得分从1到10的质量评分,以及若干理化检验的结果

#理化性质字段名称
1固定酸度fixed acidity
2挥发性酸度volatile acidity
3柠檬酸citric acid
4残糖residual sugar
5氯化物chlorides
6游离二氧化硫free sulfur dioxide
7总二氧化硫total sulfur dioxide
8密度density
9PH值pH
10硫酸盐sulphates
11酒精度alcohol
12质量quality

导入数据和库依赖

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# import seaborn as sns
%matplotlib inline
plt.style.use('ggplot')
# sep参数默认逗号
red_df = pd.read_csv('winequality-red.csv', sep=';')
white_df = pd.read_csv('winequality-white.csv', sep=';')
# 查看表头
red_df.head()
fixed_acidityvolatile_aciditycitric_acidresidual_sugarchloridesfree_sulfur_dioxidetotal_sulfur-dioxidedensitypHsulphatesalcoholquality
07.40.700.001.90.07611.034.00.99783.510.569.45
17.80.880.002.60.09825.067.00.99683.200.689.85
27.80.760.042.30.09215.054.00.99703.260.659.85
311.20.280.561.90.07517.060.00.99803.160.589.86
47.40.700.001.90.07611.034.00.99783.510.569.45

修改列名

发现 total_sulfur-dioxide 这个属性命名不规范,修改一下:

red_df.rename(columns={"total_sulfur-dioxide":"total_sulfur_dioxide"}, inplace=True)
# 查看修改成功
red_df.head(5)
fixed_acidityvolatile_aciditycitric_acidresidual_sugarchloridesfree_sulfur_dioxidetotal_sulfur_dioxidedensitypHsulphatesalcoholquality
07.40.700.001.90.07611.034.00.99783.510.569.45
17.80.880.002.60.09825.067.00.99683.200.689.85
27.80.760.042.30.09215.054.00.99703.260.659.85
311.20.280.561.90.07517.060.00.99803.160.589.86
47.40.700.001.90.07611.034.00.99783.510.569.45

回答以下问题

  • 每个数据集中的样本数
  • 每个数据集中的列数
  • 具有缺少值的特征
  • 红葡萄酒数据集中的重复行
  • 数据集中的质量等级唯一值的数量
  • 红葡萄酒数据集的平均密度
# 查看基本信息
red_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):
fixed_acidity           1599 non-null float64
volatile_acidity        1599 non-null float64
citric_acid             1599 non-null float64
residual_sugar          1599 non-null float64
chlorides               1599 non-null float64
free_sulfur_dioxide     1599 non-null float64
total_sulfur_dioxide    1599 non-null float64
density                 1599 non-null float64
pH                      1599 non-null float64
sulphates               1599 non-null float64
alcohol                 1599 non-null float64
quality                 1599 non-null int64
dtypes: float64(11), int64(1)
memory usage: 150.0 KB
# 查看样本数量
len(red_df)
1599
# 数据集中列数
len(red_df.columns)
12
# 红葡萄酒中重复行的数量
sum(red_df.duplicated())
240
# 质量的唯一值
len(red_df['quality'].unique())
6
# 红葡萄酒数据集中的平均密度
red_df['density'].mean()
0.9967466791744833

合并基本数据集

# 合并红、白葡萄酒的数据# 为红葡萄酒数据框创建颜色数组(生成多个新行)
color_red = np.repeat("red",red_df.shape[0])# 为白葡萄酒数据框创建颜色数组
color_white = np.repeat("white", white_df.shape[0])
len(color_red)
1599
red_df['color'] = color_red
# 查看新添加的列,发现添加成功
red_df.head()
fixed_acidityvolatile_aciditycitric_acidresidual_sugarchloridesfree_sulfur_dioxidetotal_sulfur_dioxidedensitypHsulphatesalcoholqualitycolor
07.40.700.001.90.07611.034.00.99783.510.569.45red
17.80.880.002.60.09825.067.00.99683.200.689.85red
27.80.760.042.30.09215.054.00.99703.260.659.85red
311.20.280.561.90.07517.060.00.99803.160.589.86red
47.40.700.001.90.07611.034.00.99783.510.569.45red
white_df["color"] = color_white
white_df.head()
fixed_acidityvolatile_aciditycitric_acidresidual_sugarchloridesfree_sulfur_dioxidetotal_sulfur_dioxidedensitypHsulphatesalcoholqualitycolor
07.00.270.3620.70.04545.0170.01.00103.000.458.86white
16.30.300.341.60.04914.0132.00.99403.300.499.56white
28.10.280.406.90.05030.097.00.99513.260.4410.16white
37.20.230.328.50.05847.0186.00.99563.190.409.96white
47.20.230.328.50.05847.0186.00.99563.190.409.96white
print(len(red_df))
print(len(white_df))
1599
4898
# 附加数据框
wine_df = red_df.append(white_df)# 查看数据框,检查是否成功
wine_df.head()
fixed_acidityvolatile_aciditycitric_acidresidual_sugarchloridesfree_sulfur_dioxidetotal_sulfur_dioxidedensitypHsulphatesalcoholqualitycolor
07.40.700.001.90.07611.034.00.99783.510.569.45red
17.80.880.002.60.09825.067.00.99683.200.689.85red
27.80.760.042.30.09215.054.00.99703.260.659.85red
311.20.280.561.90.07517.060.00.99803.160.589.86red
47.40.700.001.90.07611.034.00.99783.510.569.45red
wine_df.shape
(6497, 13)

保存合并后的数据集

# 保存自己的数据集
wine_df.to_csv("winequality_edited.csv",index=False)
# 设置seaborn的样式
# sns.set_style("ticks")
wine_df = pd.read_csv("winequality_edited.csv")
wine_df.shape
(6497, 13)

可视化探索

  • 根据此数据集中的列的直方图,以下哪个特征变量显示为右偏态?固定酸度、总二氧化硫、pH 值、酒精度

hist方法详解
subplot返回值理解
subplot画图详解

绘制柱状图

fig, axs = plt.subplots(2, 2, figsize=(8, 8))#  _ 代表不分配名字的变量
_ = wine_df.fixed_acidity.plot.hist(ax=axs[0][0], rwidth=0.9)
_ = wine_df.total_sulfur_dioxide.plot.hist(ax=axs[0][1], rwidth=0.9)
_ = wine_df.pH.plot.hist(ax=axs[1][0], rwidth=0.9)
_ = wine_df.alcohol.plot.hist(ax=axs[1][1], rwidth=0.9)

image-20240531115344262

偏态的判定

下图依次表示左偏态、正态、右偏态

image-20240531114914904

wine_df.skew(axis=0)
fixed_acidity           1.723290
volatile_acidity        1.495097
citric_acid             0.471731
residual_sugar          1.435404
chlorides               5.399828
free_sulfur_dioxide     1.220066
total_sulfur_dioxide   -0.001177
density                 0.503602
pH                      0.386839
sulphates               1.797270
alcohol                 0.565718
quality                 0.189623
dtype: float64

偏度值为正,则为右偏态,说明fixed_acidity、pH、alcohol都是右偏态

  • 根据质量对不同特征变量的散点图,以下哪个最有可能对质量产生积极的影响?_挥发性酸度、残糖、pH 值、酒精度
x = wine_df[["fixed_acidity", "total_sulfur_dioxide", "pH", "alcohol", "quality"]]fig, axs = plt.subplots(2, 2, figsize=(12, 8))_  = x.plot.scatter(y='fixed_acidity', x='quality', ax=axs[0][0], linewidths=0.001, marker='o')
_  = x.plot.scatter(y='total_sulfur_dioxide', x='quality', ax=axs[0][1], linewidths=0.001, marker='o')
_  = x.plot.scatter(y='pH', x='quality', ax=axs[1][0], linewidths=0.001, marker='o')
_  = x.plot.scatter(y='alcohol', x='quality', ax=axs[1][1], linewidths=0.001, marker='o')# sns.despine()

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

从图上看其实并不是很明显,因此采用定量计算的方式,通过计算两个变量之间的相关系数,相关系数越大则越说明有积极影响

相关系数

sub_df = wine_df.iloc[:,np.r_[0,6,8,10,11]]
sub_df.corr()['quality']
fixed_acidity          -0.076743
total_sulfur_dioxide   -0.041385
pH                      0.019506
alcohol                 0.444319
quality                 1.000000
Name: quality, dtype: float64

发现alcohol的相关系数最大,说明起到的积极作用最大

查看平均值

wine_df.mean()
fixed_acidity             7.215307
volatile_acidity          0.339666
citric_acid               0.318633
residual_sugar            5.443235
chlorides                 0.056034
free_sulfur_dioxide      30.525319
total_sulfur_dioxide    115.744574
density                   0.994697
pH                        3.218501
sulphates                 0.531268
alcohol                  10.491801
quality                   5.818378
dtype: float64

按属性分组

# 按quality分组,查看每组均值
wine_df.groupby('quality').mean()
fixed_acidityvolatile_aciditycitric_acidresidual_sugarchloridesfree_sulfur_dioxidetotal_sulfur_dioxidedensitypHsulphatesalcohol
quality
37.8533330.5170000.2810005.1400000.07703339.216667122.0333330.9957443.2576670.50633310.215000
47.2888890.4579630.2723154.1537040.06005620.636574103.4328700.9948333.2316200.50564810.180093
57.3268010.3896140.3077225.8041160.06466630.237371120.8391020.9958493.2121890.5264039.837783
67.1772570.3138630.3235835.5497530.05415731.165021115.4107900.9945583.2177260.53254910.587553
77.1289620.2888000.3347644.7316960.04527230.422150108.4986100.9931263.2280720.54702511.386006
86.8352330.2910100.3325395.3829020.04112434.533679117.5181350.9925143.2232120.51248711.678756
97.4200000.2980000.3860004.1200000.02740033.400000116.0000000.9914603.3080000.46600012.180000
# 分别以quality和color为两级索引进行分组,并查看均值
wine_df.groupby(['quality','color']).mean()
fixed_acidityvolatile_aciditycitric_acidresidual_sugarchloridesfree_sulfur_dioxidetotal_sulfur_dioxidedensitypHsulphatesalcohol
qualitycolor
3red8.3600000.8845000.1710002.6350000.12250011.00000024.9000000.9974643.3980000.5700009.955000
white7.6000000.3332500.3360006.3925000.05430053.325000170.6000000.9948843.1875000.47450010.345000
4red7.7792450.6939620.1741512.6943400.09067912.26415136.2452830.9965423.3815090.59641510.265094
white7.1294480.3812270.3042334.6282210.05009823.358896125.2791410.9942773.1828830.47613510.152454
5red8.1672540.5770410.2436862.5288550.09273616.98384756.5139500.9971043.3049490.6209699.899706
white6.9339740.3020110.3376537.3349690.05154636.432052150.9045980.9952633.1688330.4822039.808840
6red8.3471790.4974840.2738242.4771940.08495615.71159940.8699060.9966153.3180720.67532910.629519
white6.8376710.2605640.3380256.4416060.04521735.650591137.0473160.9939613.1885990.49110610.575372
7red8.8723620.4039200.3751762.7206030.07658814.04522635.0201010.9961043.2907540.74125611.465913
white6.7347160.2627670.3256255.1864770.03819134.125568125.1147730.9924523.2138980.50310211.367936
8red8.5666670.4233330.3911112.5777780.06844413.27777833.4444440.9952123.2672220.76777812.094444
white6.6571430.2774000.3265145.6714290.03831436.720000126.1657140.9922363.2186860.48622911.636000
9white7.4200000.2980000.3860004.1200000.02740033.400000116.0000000.9914603.3080000.46600012.180000
# 分组属性不作为索引
wine_df.groupby(['quality','color'], as_index=False).mean()
qualitycolorfixed_acidityvolatile_aciditycitric_acidresidual_sugarchloridesfree_sulfur_dioxidetotal_sulfur_dioxidedensitypHsulphatesalcohol
03red8.3600000.8845000.1710002.6350000.12250011.00000024.9000000.9974643.3980000.5700009.955000
13white7.6000000.3332500.3360006.3925000.05430053.325000170.6000000.9948843.1875000.47450010.345000
24red7.7792450.6939620.1741512.6943400.09067912.26415136.2452830.9965423.3815090.59641510.265094
34white7.1294480.3812270.3042334.6282210.05009823.358896125.2791410.9942773.1828830.47613510.152454
45red8.1672540.5770410.2436862.5288550.09273616.98384756.5139500.9971043.3049490.6209699.899706
55white6.9339740.3020110.3376537.3349690.05154636.432052150.9045980.9952633.1688330.4822039.808840
66red8.3471790.4974840.2738242.4771940.08495615.71159940.8699060.9966153.3180720.67532910.629519
76white6.8376710.2605640.3380256.4416060.04521735.650591137.0473160.9939613.1885990.49110610.575372
87red8.8723620.4039200.3751762.7206030.07658814.04522635.0201010.9961043.2907540.74125611.465913
97white6.7347160.2627670.3256255.1864770.03819134.125568125.1147730.9924523.2138980.50310211.367936
108red8.5666670.4233330.3911112.5777780.06844413.27777833.4444440.9952123.2672220.76777812.094444
118white6.6571430.2774000.3265145.6714290.03831436.720000126.1657140.9922363.2186860.48622911.636000
129white7.4200000.2980000.3860004.1200000.02740033.400000116.0000000.9914603.3080000.46600012.180000
# 查看分组后pH属性所在列
wine_df.groupby(['quality','color'], as_index=False)['pH'].mean()
qualitycolorpH
03red3.398000
13white3.187500
24red3.381509
34white3.182883
45red3.304949
55white3.168833
66red3.318072
76white3.188599
87red3.290754
97white3.213898
108red3.267222
118white3.218686
129white3.308000

问题 1:某种类型的葡萄酒(红葡萄酒或白葡萄酒)是否代表更高的品质?

# 用 groupby 计算每个酒类型(红葡萄酒和白葡萄酒)的平均质量
wine_df.groupby("color")["quality"].mean()
color
red      5.636023
white    5.877909
Name: quality, dtype: float64

发现白葡萄酒的品质高于红葡萄酒

哪个酸度水平的平均评分最高?

# 用 Pandas 描述功能查看最小、25%、50%、75% 和 最大 pH 值
wine_df.pH.describe()
count    6497.000000
mean        3.218501
std         0.160787
min         2.720000
25%         3.110000
50%         3.210000
75%         3.320000
max         4.010000
Name: pH, dtype: float64
# 对用于把数据“分割”成组的边缘进行分组
bin_edges = [2.72, 3.11 ,3.21 ,3.32 ,4.01 ] # 用刚才计算的五个值填充这个列表
# 四个酸度水平组的标签
bin_names = [ "high", "median_high", "mediam", "low"] # 对每个酸度水平类别进行命名
help(pd.cut)
Help on function cut in module pandas.core.reshape.tile:cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise')Bin values into discrete intervals.Use `cut` when you need to segment and sort data values into bins. Thisfunction is also useful for going from a continuous variable to acategorical variable. For example, `cut` could convert ages to groups ofage ranges. Supports binning into an equal number of bins, or apre-specified array of bins.Parameters----------x : array-likeThe input array to be binned. Must be 1-dimensional.bins : int, sequence of scalars, or pandas.IntervalIndexThe criteria to bin by.* int : Defines the number of equal-width bins in the range of `x`. Therange of `x` is extended by .1% on each side to include the minimumand maximum values of `x`.* sequence of scalars : Defines the bin edges allowing for non-uniformwidth. No extension of the range of `x` is done.* IntervalIndex : Defines the exact bins to be used.right : bool, default TrueIndicates whether `bins` includes the rightmost edge or not. If``right == True`` (the default), then the `bins` ``[1, 2, 3, 4]``indicate (1,2], (2,3], (3,4]. This argument is ignored when`bins` is an IntervalIndex.labels : array or bool, optionalSpecifies the labels for the returned bins. Must be the same length asthe resulting bins. If False, returns only integer indicators of thebins. This affects the type of the output container (see below).This argument is ignored when `bins` is an IntervalIndex.retbins : bool, default FalseWhether to return the bins or not. Useful when bins is providedas a scalar.precision : int, default 3The precision at which to store and display the bins labels.include_lowest : bool, default FalseWhether the first interval should be left-inclusive or not.duplicates : {default 'raise', 'drop'}, optionalIf bin edges are not unique, raise ValueError or drop non-uniques... versionadded:: 0.23.0Returns-------out : pandas.Categorical, Series, or ndarrayAn array-like object representing the respective bin for each valueof `x`. The type depends on the value of `labels`.* True (default) : returns a Series for Series `x` or apandas.Categorical for all other inputs. The values stored withinare Interval dtype.* sequence of scalars : returns a Series for Series `x` or apandas.Categorical for all other inputs. The values stored withinare whatever the type in the sequence is.* False : returns an ndarray of integers.bins : numpy.ndarray or IntervalIndex.The computed or specified bins. Only returned when `retbins=True`.For scalar or sequence `bins`, this is an ndarray with the computedbins. If set `duplicates=drop`, `bins` will drop non-unique bin. Foran IntervalIndex `bins`, this is equal to `bins`.See Also--------qcut : Discretize variable into equal-sized buckets based on rankor based on sample quantiles.pandas.Categorical : Array type for storing data that come from afixed set of values.Series : One-dimensional array with axis labels (including time series).pandas.IntervalIndex : Immutable Index implementing an ordered,sliceable set.Notes-----Any NA values will be NA in the result. Out of bounds values will be NA inthe resulting Series or pandas.Categorical object.Examples--------Discretize into three equal-sized bins.>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3)... # doctest: +ELLIPSIS[(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ...Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ...>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3, retbins=True)... # doctest: +ELLIPSIS([(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ...Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ...array([0.994, 3.   , 5.   , 7.   ]))Discovers the same bins, but assign them specific labels. Notice thatthe returned Categorical's categories are `labels` and is ordered.>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]),...        3, labels=["bad", "medium", "good"])[bad, good, medium, medium, good, bad]Categories (3, object): [bad < medium < good]``labels=False`` implies you just want the bins back.>>> pd.cut([0, 1, 1, 2], bins=4, labels=False)array([0, 1, 1, 3])Passing a Series as an input returns a Series with categorical dtype:>>> s = pd.Series(np.array([2, 4, 6, 8, 10]),...               index=['a', 'b', 'c', 'd', 'e'])>>> pd.cut(s, 3)... # doctest: +ELLIPSISa    (1.992, 4.667]b    (1.992, 4.667]c    (4.667, 7.333]d     (7.333, 10.0]e     (7.333, 10.0]dtype: categoryCategories (3, interval[float64]): [(1.992, 4.667] < (4.667, ...Passing a Series as an input returns a Series with mapping value.It is used to map numerically to intervals based on bins.>>> s = pd.Series(np.array([2, 4, 6, 8, 10]),...               index=['a', 'b', 'c', 'd', 'e'])>>> pd.cut(s, [0, 2, 4, 6, 8, 10], labels=False, retbins=True, right=False)... # doctest: +ELLIPSIS(a    0.0b    1.0c    2.0d    3.0e    4.0dtype: float64, array([0, 2, 4, 6, 8]))Use `drop` optional when bins is not unique>>> pd.cut(s, [0, 2, 4, 6, 10, 10], labels=False, retbins=True,...    right=False, duplicates='drop')... # doctest: +ELLIPSIS(a    0.0b    1.0c    2.0d    3.0e    3.0dtype: float64, array([0, 2, 4, 6, 8]))Passing an IntervalIndex for `bins` results in those categories exactly.Notice that values not covered by the IntervalIndex are set to NaN. 0is to the left of the first bin (which is closed on the right), and 1.5falls between two bins.>>> bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)])>>> pd.cut([0, 0.5, 1.5, 2.5, 4.5], bins)[NaN, (0, 1], NaN, (2, 3], (4, 5]]Categories (3, interval[int64]): [(0, 1] < (2, 3] < (4, 5]]

# 创建 acidity_levels 列
wine_df['acidity_levels'] = pd.cut(wine_df['pH'], bin_edges, labels=bin_names)# 检查该列是否成功创建
wine_df.head()
fixed_acidityvolatile_aciditycitric_acidresidual_sugarchloridesfree_sulfur_dioxidetotal_sulfur_dioxidedensitypHsulphatesalcoholqualitycoloracidity_levels
07.40.700.001.90.07611.034.00.99783.510.569.45redlow
17.80.880.002.60.09825.067.00.99683.200.689.85redmedian_high
27.80.760.042.30.09215.054.00.99703.260.659.85redmediam
311.20.280.561.90.07517.060.00.99803.160.589.86redmedian_high
47.40.700.001.90.07611.034.00.99783.510.569.45redlow
# 用 groupby 计算每个酸度水平的平均质量
wine_df.groupby("acidity_levels")['quality'].mean()
acidity_levels
high           5.783343
median_high    5.784540
mediam         5.850832
low            5.859593
Name: quality, dtype: float64

发现酸度越低,质量评分就越好

# 保存更改,供下一段使用
wine_df.to_csv('winequality_edited_al.csv', index=False)

酒精含量高的酒是否评分较高?

# 获取酒精含量的中位数
alcohol_median = wine_df.alcohol.median()
wine_df.head();
# 选择酒精含量小于中位数的样本
low_alcohol = wine_df.query("alcohol < @alcohol_median")# 选择酒精含量大于等于中位数的样本
high_alcohol = wine_df.query("alcohol >= @alcohol_median")
# 获取低酒精含量组和高酒精含量组的平均质量评分
print("低浓度酒精:",low_alcohol.quality.mean())
print("高浓度酒精:", high_alcohol.quality.mean())
低浓度酒精: 5.475920679886686
高浓度酒精: 6.146084337349397

发现高浓度酒精的质量评级更高

口感较甜的酒是否评分较高?

# 获取残留糖分的中位数
sugar_median = wine_df["residual_sugar"].median()
# 选择残留糖分小于中位数的样本
low_sugar = wine_df.query("residual_sugar < @sugar_median")# 选择残留糖分大于等于中位数的样本
high_sugar = wine_df.query("residual_sugar >= @sugar_median")# 确保这些查询中的每个样本只出现一次
num_samples = wine_df.shape[0]
num_samples == low_sugar['quality'].count() + high_sugar['quality'].count() # 应为真
True
# 获取低糖分组和高糖分组的平均质量评分
print("高糖分质量评分:",high_sugar.quality.mean())
print("低糖分质量评分:",low_sugar.quality.mean())
高糖分质量评分: 5.82782874617737
低糖分质量评分: 5.808800743724822

发现高糖分的酒质量评分更高

类和质量图

Seaborn绘图示例
Pandas可视化文档

首先查看一下两种酒的质量均值

colors = ['red','white']
color_means = wine_df.groupby('color')['quality'].mean()
color_means.plot(kind='bar', title='Average Wine Quality by Color', color=colors, alpha=.8)
plt.xlabel('colors', fontsize=18);
plt.ylabel('Quality', fontsize=18);

output_79_0

进一步按质量和颜色分组查看

counts = wine_df.groupby(['quality', 'color']).count()['pH']
counts.plot(kind='bar', title='Counts by Wine Color and quality', color=counts.index.get_level_values(1), alpha=.7)
plt.xlabel('Quality and Color', fontsize=18)
plt.ylabel('Count', fontsize=18)
Text(0, 0.5, 'Count')

output_81_1

但红酒和白酒的样本数本来就相差较大,所以我们查看比例才更准确。

totals = wine_df.groupby('color').count()['pH']
counts = wine_df.groupby(['quality', 'color']).count()['pH']
proportions = counts / totals
proportions.plot(kind='bar', title='Counts by Wine Color and quality',color=counts.index.get_level_values(1), alpha=.7)
plt.xlabel('Quality and Color', fontsize=18)
plt.ylabel('Proportions', fontsize=18)
Text(0, 0.5, 'Proportions')

output_83_1

# 用 Matplotlib 创建柱状图

pyplot 的 bar 功能中有两个必要参数:条柱的 x 坐标和条柱的高度。

plt.bar([1, 2, 3], [224, 620, 425], color='blue');

output_86_0

可以利用 pyplot 的 xticks 功能,或通过在 bar 功能中指定另一个参数,指定 x 轴刻度标签。以下两个框的结果相同。

# 绘制条柱
plt.bar([1, 2, 3], [224, 620, 425])# 为 x 轴指定刻度标签及其标签
plt.xticks([1, 2, 3], ['a', 'b', 'c']);

output_88_0

# 用 x 轴的刻度标签绘制条柱
plt.bar([1, 2, 3], [224, 620, 425], tick_label=['a', 'b', 'c']);

output_89_0

用以下方法设置轴标题和标签。

plt.bar([1, 2, 3], [224, 620, 425], tick_label=['a', 'b', 'c'])
plt.title('Some Title')
plt.xlabel('Some X Label')
plt.ylabel('Some Y Label');


output_91_0

# example
import matplotlib.pyplot as plt
import numpy as npx = np.linspace(0, 1, 10)
number = 5
cmap = plt.get_cmap('gnuplot')
colors = [cmap(i) for i in np.linspace(0, 1, number)]for i, color in enumerate(colors, start=1):plt.plot(x, i * x + i, color=color, label='$y = {i}x + {i}$'.format(i=i))
plt.legend(loc='best')
plt.show()


外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这篇关于数据分析案例一使用Python进行红酒与白酒数据数据分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1021081

相关文章

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹