storm消费kafka数据

2024-05-31 17:38
文章标签 数据 kafka 消费 storm

本文主要是介绍storm消费kafka数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/tonylee0329/article/details/43016385
使用storm-kafka模块读取kafka中的数据,按照以下两步进行构建(我使用的版本是0.9.3)
1. 使用BrokerHosts接口来配置kafka broker host与partition的mapping信息;
2. 使用KafkaConfig来配置一些与kafka自身相关的选项,如fetchSizeBytes、socketTimeoutMs
下面分别介绍这两块的实现:

对于配置1,目前支持两种实现方式:zk配置、静态ip端口方式

第一种方式:Zk读取(比较常见)
[html] view plain copy
ZkHosts支持两种创建方式,
public ZkHosts(String brokerZkStr, String brokerZkPath)
//使用默认brokerZkPath:”/brokers”
public ZkHosts(String brokerZkStr)

通过这种方式访问的时候,经过60s会刷新一下host->partition的mapping

第二步:构建KafkaConfig对象
目前提供两种构造函数,
[html] view plain copy
public KafkaConfig(BrokerHosts hosts, String topic)
//clientId如果不想每次随机生成的话,就自己设置一个
public KafkaConfig(BrokerHosts hosts, String topic, String clientId)

代码参考:
[html] view plain copy
//这个地方其实就是kafka配置文件里边的zookeeper.connect这个参数,可以去那里拿过来。
String brokerZkStr = “10.100.90.201:2181/kafka_online_sample”;
String brokerZkPath = “/brokers”;
ZkHosts zkHosts = new ZkHosts(brokerZkStr, brokerZkPath);

    String topic = "mars-wap";  //以下:将offset汇报到哪个zk集群,相应配置  

// String offsetZkServers = “10.199.203.169”;
String offsetZkServers = “10.100.90.201”;
String offsetZkPort = “2181”;
List zkServersList = new ArrayList();
zkServersList.add(offsetZkServers);
//汇报offset信息的root路径
String offsetZkRoot = “/stormExample”;
//存储该spout id的消费offset信息,譬如以topoName来命名
String offsetZkId = “storm-example”;

    SpoutConfig kafkaConfig = new SpoutConfig(zkHosts, topic, offsetZkRoot, offsetZkId);  kafkaConfig.zkRoot = offsetZkRoot;  kafkaConfig.zkPort = Integer.parseInt(offsetZkPort);  kafkaConfig.zkServers = zkServersList;  kafkaConfig.id = offsetZkId;  kafkaConfig.scheme = new SchemeAsMultiScheme(new StringScheme());  KafkaSpout spout = new KafkaSpout(kafkaConfig);  TopologyBuilder builder = new TopologyBuilder();  builder.setSpout("spout", spout, 1);  builder.setBolt("bolt", new Bolt(), 1).shuffleGrouping("spout");  Config config = new Config();  LocalCluster cluster = new LocalCluster();  cluster.submitTopology("test", config, builder.createTopology());  // cluster submit.  

// try {
// StormSubmitter.submitTopology(“storm-kafka-example”,config,builder.createTopology());
// } catch (AlreadyAliveException e) {
// e.printStackTrace();
// } catch (InvalidTopologyException e) {
// e.printStackTrace();
// }

第二种方式:静态ip端口方式
[html] view plain copy
String kafkaHost = “10.100.90.201”;
Broker brokerForPartition0 = new Broker(kafkaHost);//localhost:9092
Broker brokerForPartition1 = new Broker(kafkaHost, 9092);//localhost:9092 but we specified the port explicitly
GlobalPartitionInformation partitionInfo = new GlobalPartitionInformation();
partitionInfo.addPartition(0, brokerForPartition0);//mapping form partition 0 to brokerForPartition0
partitionInfo.addPartition(1, brokerForPartition1);//mapping form partition 1 to brokerForPartition1
StaticHosts hosts = new StaticHosts(partitionInfo);

    String topic="mars-wap";  String offsetZkRoot ="/stormExample";  String offsetZkId="staticHost";  String offsetZkServers = "10.100.90.201";  String offsetZkPort = "2181";  List<String> zkServersList = new ArrayList<String>();  zkServersList.add(offsetZkServers);  SpoutConfig kafkaConfig = new SpoutConfig(hosts,topic,offsetZkRoot,offsetZkId);  kafkaConfig.zkPort = Integer.parseInt(offsetZkPort);  kafkaConfig.zkServers = zkServersList;  kafkaConfig.scheme = new SchemeAsMultiScheme(new StringScheme());  KafkaSpout spout = new KafkaSpout(kafkaConfig);  TopologyBuilder builder = new TopologyBuilder();  builder.setSpout("spout", spout, 1);  builder.setBolt("bolt", new Bolt(), 1).shuffleGrouping("spout");  Config config = new Config();  LocalCluster cluster = new LocalCluster();  cluster.submitTopology("test", config, builder.createTopology());  

完整的使用例子,见github源码
https://github.com/tonylee0329/storm-example/blob/master/src/main/java/org/tony/storm_kafka/common/

参考:
https://github.com/apache/storm/blob/v0.9.3/external/storm-kafka/README.md

https://github.com/tonylee0329/storm-example/blob/master/src/main/java/org/tony/storm_kafka/common/ZkTopology.java

Kafka之Consumer获取消费数据全过程图解
字数198 阅读557 评论0 喜欢1
这篇文章是作为:跟我学Kafka源码之Consumer分析 的补充材料,看过我们之前源码分析的同学可能知道。
本文将从客户端程序如何调用Consumer获取到最终Kafka消息的全过程以图解的方式作一个源码级别的梳理。

废话不多说,请图看

时序图

Business Process Model.jpg
流程图

20140809174809543.png
文章短小的目的是便于大家快速找到内容的核心加以理解,避免文章又臭又长抓不住重点。
对于Kafka技术,如果大家对此有任何疑问,请给我留言,我们可以深入探讨。

清晰的UML时序图在这里可以看:
http://dl2.iteye.com/upload/attachment/0115/5649/70a096f4-c649-3efd-84bb-2379927dee36.jpg

这篇关于storm消费kafka数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018603

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav