Tensorflow入门实战 P02-彩色图片分类

2024-05-31 15:12

本文主要是介绍Tensorflow入门实战 P02-彩色图片分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1、序言

2、主要代码

3、运行结果展示

(1)展示cifar10里面的20张图片

(2)预测的图片

(3)模型评估


  • 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

1、序言

这篇博客,主要是讲的是彩色图片分类,数据集为:cifar10。

和以往的流程一样:

① 判断是否在GPU上运行

② 导入cifar10数据集

③ 归一化(将像素的值标准化至0-1的区间内)

④ 可视化数据集里的数据(展示了2行,共20张图片)

⑤ 搭建神经网络

⑥ 编译

⑦ 训练模型

⑧ 预测并显示预测的图片

⑨ 模型评估 

2、主要代码

import tensorflow as tf
from keras import datasets, layers, models
import matplotlib.pyplot as plt
import numpy as np
# 1、设置GPU
gpus = tf.config.list_physical_devices('GPU')if gpus:gpu0 = gpus[0]  # 如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0,True)  # 设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0], "GPU")# 2、导入数据
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()# 3、归一化
# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0
print(train_images.shape,test_images.shape,train_labels.shape,test_labels.shape)
# (50000, 32, 32, 3)     (10000, 32, 32, 3)    (50000, 1)          (10000, 1)# 4、可视化
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']plt.figure(figsize=(20,10))
for i in range(20):plt.subplot(5,10,i+1)plt.xticks([])plt.yticks([])plt.grid(False)plt.imshow(train_images[i], cmap=plt.cm.binary)plt.xlabel(class_names[train_labels[i][0]])
plt.show()# 二、搭建神经网络
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),  # 卷积层1,卷积核3*3layers.MaxPooling2D((2, 2)),  # 池化层1,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3layers.MaxPooling2D((2, 2)),  # 池化层2,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3layers.Flatten(),  # Flatten层,连接卷积层与全连接层layers.Dense(64, activation='relu'),  # 全连接层,特征进一步提取layers.Dense(10)  # 输出层,输出预期结果
])# model.summary()  # 打印网络结构# 三、编译
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 四、训练模型
history = model.fit(train_images, train_labels, epochs=10,validation_data=(test_images, test_labels))# 五、预测
plt.imshow(test_images[1])
plt.show()pre = model.predict(test_images)
print(class_names[np.argmax(pre[1])])# 六、模型评估
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)print("test_loss:", test_loss, "---------test_acc:", test_acc)

3、运行结果展示

(1)展示cifar10里面的20张图片

(2)预测的图片

遗憾,我的结果预测错误,预测的是:automobile

(3)模型评估

上图可以看到,测试精确度达到70%左右。

这篇关于Tensorflow入门实战 P02-彩色图片分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018283

相关文章

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java实战之利用POI生成Excel图表

《Java实战之利用POI生成Excel图表》ApachePOI是Java生态中处理Office文档的核心工具,这篇文章主要为大家详细介绍了如何在Excel中创建折线图,柱状图,饼图等常见图表,需要的... 目录一、环境配置与依赖管理二、数据源准备与工作表构建三、图表生成核心步骤1. 折线图(Line Ch

Java使用Tesseract-OCR实战教程

《Java使用Tesseract-OCR实战教程》本文介绍了如何在Java中使用Tesseract-OCR进行文本提取,包括Tesseract-OCR的安装、中文训练库的配置、依赖库的引入以及具体的代... 目录Java使用Tesseract-OCRTesseract-OCR安装配置中文训练库引入依赖代码实

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck