【动态规划 组合数学 放球问题】2338. 统计理想数组的数目

本文主要是介绍【动态规划 组合数学 放球问题】2338. 统计理想数组的数目,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文涉及知识点

动态规划汇总
组合数学汇总
【组合数学 隔板法 容斥原理】放球问题

本题同解

【动态规划】【前缀和】【分组】2338. 统计理想数组的数目

LeetCode2338. 统计理想数组的数目

给你两个整数 n 和 maxValue ,用于描述一个 理想数组 。
对于下标从 0 开始、长度为 n 的整数数组 arr ,如果满足以下条件,则认为该数组是一个 理想数组 :
每个 arr[i] 都是从 1 到 maxValue 范围内的一个值,其中 0 <= i < n 。
每个 arr[i] 都可以被 arr[i - 1] 整除,其中 0 < i < n 。
返回长度为 n 的 不同 理想数组的数目。由于答案可能很大,返回对 109 + 7 取余的结果。

示例 1:

输入:n = 2, maxValue = 5
输出:10
解释:存在以下理想数组:

  • 以 1 开头的数组(5 个):[1,1]、[1,2]、[1,3]、[1,4]、[1,5]
  • 以 2 开头的数组(2 个):[2,2]、[2,4]
  • 以 3 开头的数组(1 个):[3,3]
  • 以 4 开头的数组(1 个):[4,4]
  • 以 5 开头的数组(1 个):[5,5]
    共计 5 + 2 + 1 + 1 + 1 = 10 个不同理想数组。
    示例 2:

输入:n = 5, maxValue = 3
输出:11
解释:存在以下理想数组:

  • 以 1 开头的数组(9 个):
    • 不含其他不同值(1 个):[1,1,1,1,1]
    • 含一个不同值 2(4 个):[1,1,1,1,2], [1,1,1,2,2], [1,1,2,2,2], [1,2,2,2,2]
    • 含一个不同值 3(4 个):[1,1,1,1,3], [1,1,1,3,3], [1,1,3,3,3], [1,3,3,3,3]
  • 以 2 开头的数组(1 个):[2,2,2,2,2]
  • 以 3 开头的数组(1 个):[3,3,3,3,3]
    共计 9 + 1 + 1 = 11 个不同理想数组。

提示:

2 <= n <= 104
1 <= maxValue <= 104

动态规划+放球问题

分两步:
一,利用动态规划计算理想数组忽略重复元素(令此数组为arr)的的数目。比如:[1,1,2]和[1,2,2]相同。
二,第一步的方案对应多少种理想数组。如:[1,2] 对应[1,1,2]和[1,2,2]。显然n和非重复元素的数量确定时,对应的方案数是确定的。就是放球问题:球同,盒子不同,不能为空。

动态规划的状态表示

dp[len][max] 长度为len,最后的值为max的不重复数组arr数量。

动态规划的转移方程

通过前置条件更新后置条件。
next 是iMax的倍数,且大于iMax。
枚举已知条件,iMax len
dp[len+1][next] += dp[len][iMax]

动态规划的初始值

全部为1。

动态规划的填表顺序

iMax(1:maxLen)和len(2:14) arr[i+1] > arr[i] 且是倍数关系。至少是2倍。极端情况是:[1,2,4$\cdots$213] 共14个元素。

代码

核心代码

template<int MOD = 1000000007>
class C1097Int
{
public:C1097Int(long long llData = 0) :m_iData(llData% MOD){}C1097Int  operator+(const C1097Int& o)const{return C1097Int(((long long)m_iData + o.m_iData) % MOD);}C1097Int& operator+=(const C1097Int& o){m_iData = ((long long)m_iData + o.m_iData) % MOD;return *this;}C1097Int& operator-=(const C1097Int& o){m_iData = (m_iData + MOD - o.m_iData) % MOD;return *this;}C1097Int  operator-(const C1097Int& o){return C1097Int((m_iData + MOD - o.m_iData) % MOD);}C1097Int  operator*(const C1097Int& o)const{return((long long)m_iData * o.m_iData) % MOD;}C1097Int& operator*=(const C1097Int& o){m_iData = ((long long)m_iData * o.m_iData) % MOD;return *this;}C1097Int  operator/(const C1097Int& o)const{return *this * o.PowNegative1();}C1097Int& operator/=(const C1097Int& o){*this /= o.PowNegative1();return *this;}bool operator==(const C1097Int& o)const{return m_iData == o.m_iData;}bool operator<(const C1097Int& o)const{return m_iData < o.m_iData;}C1097Int pow(long long n)const{C1097Int iRet = 1, iCur = *this;while (n){if (n & 1){iRet *= iCur;}iCur *= iCur;n >>= 1;}return iRet;}C1097Int PowNegative1()const{return pow(MOD - 2);}int ToInt()const{return m_iData;}
private:int m_iData = 0;;
};template<int MOD = 1000000007>
C1097Int<MOD> Pow(const C1097Int<MOD>& bi1, long long ii2) {return	bi1.pow(ii2);
}template<class T >
class CFactorial
{
public:CFactorial(int n):m_res(n+1){m_res[0] = 1;for (int i = 1; i <= n; i++) {m_res[i] = m_res[i - 1] * i;}}	T Com(int iSel, int iCanSel)const {return m_res[iCanSel] / m_res[iSel]/ m_res[iCanSel - iSel];}T Com(const vector<int>& cnt)const {T biRet = 1;int iCanSel = std::accumulate(cnt.begin(), cnt.end(), 0);for (int j = 0; j < cnt.size(); j++) {biRet *= Com(cnt[j], iCanSel);iCanSel -= cnt[j];}return biRet;}vector<T> m_res;
};template<class T>
class CBallBox
{
public:CBallBox(CFactorial<T>& fac,int n,int m):m_fac(fac),m_iN(n),m_iM(m){}T NotNotNot() {//球不同盒子不同不能为空return g(m_iM);}T NotIsNot() {//球不同盒子同不能为空return NotNotNot()/ m_fac.m_res[m_iM];}T IsNotIs() {//球同盒子不同能为空return m_fac.Com(m_iM - 1, m_iN + m_iM - 1);}T IsNotNot(){//球同盒子不同不能为空if (m_iN < m_iM) { return 0; }return m_fac.Com(m_iM - 1, m_iN  - 1);}const int m_iM, m_iN;
protected:	T g(int m)const {T biRet;for (int i = 0; i <= m; i++) {	auto cur = m_fac.Com(i, m)  * Pow(T(m - i), m_iN);if (1 & i) {biRet -= cur;}else {biRet += cur;}}return biRet;}CFactorial<T>& m_fac;
};class Solution {
public:int idealArrays(int n, int maxValue) {static auto vCnt = Init();C1097Int<> biRet = 0;static CFactorial<C1097Int<>> fac(10'000 + 20);for (int len = 1; len <= 14; len++) {CBallBox<C1097Int<>> ballBox(fac,n,len);auto cur = ballBox.IsNotNot()*vCnt[len][maxValue];biRet += cur;}return biRet.ToInt();}vector < vector<C1097Int<>>> Init(){const int iMaxMax = 10'000;vector < vector<C1097Int<>>> dp(14+1, vector < C1097Int<>>(iMaxMax + 1));for (int iMax = 1; iMax <= iMaxMax; iMax++) {dp[1][iMax] = 1;}for (int len = 1; len < 14; len++) {for (int iMax = 1; iMax <= iMaxMax; iMax++) {for (auto next = iMax * 2; next <= iMaxMax; next += iMax) {				dp[len + 1][next] += dp[len][iMax];}}		}vector < vector<C1097Int<>>> dp2 = dp;for (int iMax = 2; iMax <= iMaxMax; iMax++) {for (int len = 1; len <= 14; len++) {dp2[len][iMax] += dp2[len][iMax - 1];}}return dp2;}
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{int n, maxValue;{Solution sln;n = 2, maxValue = 5;auto res = sln.idealArrays(n, maxValue);Assert(res, 10);}{Solution sln;n = 5, maxValue = 3;auto res = sln.idealArrays(n, maxValue);Assert(res, 11);}{Solution sln;n = 1000, maxValue = 1000;auto res = sln.idealArrays(n, maxValue);Assert(res, 91997497);}{Solution sln;n = 10000, maxValue = 10000;auto res = sln.idealArrays(n, maxValue);Assert(res, 22940607);}}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
《喜缺全书算法册》以原理、正确性证明、总结为主。
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【动态规划 组合数学 放球问题】2338. 统计理想数组的数目的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018152

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-