精通推荐算法7:多任务学习 -- 总体架构

2024-05-30 22:36

本文主要是介绍精通推荐算法7:多任务学习 -- 总体架构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 多任务学习的总体架构

目前的互联网主流推荐场景在大多数情况下需要优化多个业务目标。例如在淘宝商品推荐中,需要兼顾点击率和转化率。在抖音短视频推荐中,需要考虑完播率、播放时长、点赞率、评论率、关注率等目标。为了提升各项业务目标,并降低维护成本,它们大多采用了多任务学习(Multi-Task Learning,MTL),并取得了非常不错的业务效果。

推荐算法多任务学习主要包括多任务建模多任务融合两部分。多任务建模主要解决如何同时学习多个任务的表征的问题,其核心在于需要平衡任务间的相关性和差异性,从而提升整体性能。多任务融合则主要解决如何利用多个预估值进行最终排序的问题,通常有融合公式排序模型强化学习等解决方案。推荐算法多任务学习的知识框架如图1所示。

图1 多任务学习知识框架

多任务学习在我的新书《精通推荐算法:核心模块+经典模型+代码详解》第7章中有详细讲解。包括ESSM、MMOE和PLE等面试常考的模型。详细请参见

《精通推荐算法:核心模块+经典模型+代码详解》(谢杨易)【摘要 书评 试读】- 京东图书

2 为什么需要多任务学习

多任务学习目前被广泛应用于搜索、推荐和广告等场景中。相比单任务学习,它的优点主要如下。

  • 降低训练、部署和维护成本。多任务学习利用一个模型联合训练和优化多个业务目标,进行模型训练、部署和维护。同时,任务间共享一部分参数,缩小了模型整体体积,并降低了内存开销。特别是Embedding层,拥有模型绝大部分参数。多任务学习通过共享Embedding的方式,可以显著缩小模型体积,节省离线和在线资源。
  • 数据增强。在某些情况下,一些任务的数据较难获得,例如电商中的购买行为,单独训练模型容易欠拟合,影响表达能力和业务效果。通过共享参数的方式,可以让模型学习到其他任务的特征和数据,例如电商中的点击行为,从而缓解该任务的数据稀疏问题,相当于一定程度的数据增强。
  • 减少过拟合。多任务模型需要同时优化所有子任务,尽量让它们都达到最优。对于某个特定子任务,其他任务相当于它的正则项,有利于降低过拟合风险。
  • 提升泛化能力。多任务学习可以让模型学到更多的任务和知识,在各个子任务上均表现良好。这有利于提升模型泛化能力,在处理新的子任务时鲁棒性更好。

3 多任务学习的基本框架

多任务学习主要有硬参数共享(Hard Parameter Sharing)和软参数共享(Soft Parameter Sharing)两大类。硬参数共享直接让多个子任务共享某些模型结构和参数,目前仍然是主流方法。最常见的硬参数共享方法是共享底层(Share Bottom),它让子任务共享模型底层,例如Embedding层和前几层DNN。而模型上层,例如后几层DNN和输出层,则是相互独立的。硬参数共享的模型结构如图2所示。

图2 硬参数共享的模型结构

软参数共享的每个任务都拥有独立的模型,通过在各子任务模型参数的距离中加入正则化约束来保证任务间的相关性和模型间的相似性。常用的正则化方法有L1正则和L2正则等。软参数共享的模型结构如图3所示。

图3 软参数共享的模型结构

相比于软参数共享,硬参数共享模型的参数更少,结构更为紧凑和简单,训练和维护成本更低,是目前推荐算法多任务学习的主流范式。ESMMMMOEPLE等经典多任务模型,均属于硬参数共享模型。ESMM利用用户行为顺序关系,建立了曝光、点击、转化三者之间的关联,有效解决了传统CVR任务的样本选择偏差和数据稀疏问题,取得了非常不错的效果。其模型结构如图4所示。

图4 ESSM的模型结构

MMOE 构建了多个底层专家(Experts)网络,可以抽取不同信息。每个子任务有一个独立门控(Gate)单元,将多个专家的输出融合到该子任务中。得益于采用了多个专家网络和门控单元,MMOE建模子任务差别较大的场景时,仍能取得不错的效果。目前它已被广泛应用于搜索、推荐和广告的各大业务场景中。MMOE模型结构如图5所示。

图5 MMOE的模型结构

PLE将由所有子任务共享的底层网络,拆解成共享部分和独立部分,从而平衡任务间的相关性和差异性。同时通过堆叠多层底层网络,渐进式分离出各子任务的深层语义信息。PLE在子任务相关性高和相关性低的场景,均表现良好,并成功应用在腾讯视频推荐场景,取得了非常不错的业务效果。PLE模型结构如图6所示。

图6 PLE的模型结构

4 多任务学习的难点和挑战

多任务学习具有维护成本低、数据增强、减少过拟合和提升泛化能力等优点,可以提升各项业务水平。多任务学习要解决的主要问题如下。

1)如何平衡子任务间的相关性和差异性。子任务间有一定的相似性和相关性,同时具备一定的差异性,甚至冲突。例如,淘宝商品推荐中的点击率和转化率。通过共享底层等硬参数共享方法,可以学习到各子任务间的相关性,但也容易带来信息串扰,导致子任务间差异较大时效果不佳,某些子任务的执行效果甚至不如单任务建模,这就是负迁移现象。MMOE模型在底层构建了多个专家(Experts)网络,用来提取多种不同信息,同时利用每个子任务独有的门控(Gate)单元,融合多个专家的输出,兼顾子任务间的相关性和差异性。PLE模型则更进一步,将专家网络拆分为子任务共享的和独占的,进一步缓解了负迁移问题。

2)如何融合子任务的损失。一般采用加权求和方式,如式(1)所示。

其中,L为模型总损失,是多任务学习的最终优化目标。w为融合权重,用来平衡各个子任务的影响,防止总损失被某些任务主导。 n 为子任务个数。损失函数融合的难点在于难以确定合适的融合权重,而且在训练过程中可能还需要动态调节。

3)如何融合子任务的输出。多任务模型的每个子任务均会有一个输出,需要将它们融合成一个输出,作为最终的排序分数。最为简便的方法是使用融合公式,PLE便采用了这一方法。但融合公式缺点明显,一方面基于非监督学习,难以获得准确的权重;另一方面难以随着数据分布的变化而动态更新。网格搜索、排序模型和强化学习等多种方案可以对其进行优化。其中BatchRL-MTF模型利用强化学习,将多模型融合看作一个马尔科夫决策过程,并在推荐会话中提出了一种基于批量强化学习的多任务融合框架。并通过对用户行为的全面研究,从用户粘性和用户活跃度两个方面,运用启发式算法对用户满意度反馈进行了建模。

6 作者新书推荐

历经两年多,花费不少心血,终于撰写完成了这部新书。

购书方式:新书发布,京东限时15天内5折优惠。原价89,现价44.5,一杯咖啡的价钱。

发货速度:京东自营,半天即可送到。

源代码:扫描图书封底二维码,进入读者群,群公告中有代码下载方式

微信群:图书封底有读者微信群,作者也在群里,任何技术、offer选择和职业规划的问题,都可以咨询

售后:支持京东七天无理由退货,售后无忧。

详细介绍和全书目录,详见

《精通推荐算法:核心模块+经典模型+代码详解》(谢杨易)【摘要 书评 试读】- 京东图书

这篇关于精通推荐算法7:多任务学习 -- 总体架构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1016996

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Spring Boot 中整合 MyBatis-Plus详细步骤(最新推荐)

《SpringBoot中整合MyBatis-Plus详细步骤(最新推荐)》本文详细介绍了如何在SpringBoot项目中整合MyBatis-Plus,包括整合步骤、基本CRUD操作、分页查询、批... 目录一、整合步骤1. 创建 Spring Boot 项目2. 配置项目依赖3. 配置数据源4. 创建实体类

Java子线程无法获取Attributes的解决方法(最新推荐)

《Java子线程无法获取Attributes的解决方法(最新推荐)》在Java多线程编程中,子线程无法直接获取主线程设置的Attributes是一个常见问题,本文探讨了这一问题的原因,并提供了两种解决... 目录一、问题原因二、解决方案1. 直接传递数据2. 使用ThreadLocal(适用于线程独立数据)

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

mybatis的整体架构

mybatis的整体架构分为三层: 1.基础支持层 该层包括:数据源模块、事务管理模块、缓存模块、Binding模块、反射模块、类型转换模块、日志模块、资源加载模块、解析器模块 2.核心处理层 该层包括:配置解析、参数映射、SQL解析、SQL执行、结果集映射、插件 3.接口层 该层包括:SqlSession 基础支持层 该层保护mybatis的基础模块,它们为核心处理层提供了良好的支撑。

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06