STM32定时器及输出PWM完成呼吸灯

2024-05-30 06:20

本文主要是介绍STM32定时器及输出PWM完成呼吸灯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、STM32定时器原理
    • 1、基本定时器
    • 2、通用定时器
      • (1)时钟源
      • (2)预分频器PSC
      • (3)计数器CNT
      • (4)自动装载寄存器ARR
    • 3、高级定时器
  • 二、PWM工作原理
  • 三、控制LED以2s的频率周期性地亮-灭
    • 1、STM32CubeMX建立项目
    • 2、代码编写
    • 3、运行结果
  • 四、STM32输出PWM完成呼吸灯
    • 1、STM32CubeMX建立项目
    • 2、代码编写
    • 3、运行结果
    • 4、逻辑分析仪
  • 总结
  • 参考资料

一、STM32定时器原理

定时器就是计数器,定时器的作用就是设置一个时间,然后时间到后就会通过中断等方式通知STM32执行某些程序。定时器除了可以实现普通的定时功能,还可以实现捕获脉冲宽度,计算PWM占空比,输出PWM波形,编码器计数等。

STM32的定时器分为基本定时器、通用定时器和高等定时器。

在这里插入图片描述

1、基本定时器

功能:作为时基,定时功能。

2、通用定时器

STM32通用定时器TIMx(x=2,3,4,5)主要由时钟源、时钟单元、捕获和比较通道等构成,核心是可编程预分频驱动的16位自动装载计数器。
在这里插入图片描述

(1)时钟源

当定时器使用内部时钟时,定时器的时钟源统称为TIMxCLK。虽然在系统默认的配置中,TIMxCLK的时钟频率都是72MHz,但其时钟来源并不相同。

  • 定时器TIM2~TIM7挂接在APB1上
  • 定时器TIM1和TIM8挂接在APB2上

若外部晶振的频率为8MHz,则系统默认的时钟频率为72MHz

  • APB1预分频器的分频系数设置为2,则PCLK1=36MHz;
  • APB2预分频系数设置为1,则PCLK2=72MHz,TIM1和TIM8的时钟频率TIMxCLK=72MHz;
  • Cortex系统时钟由AHB时钟(HCLK)8分频得到,即SysTick的频率为9MHz。

(2)预分频器PSC

可以以1~65535之间的任意数值对时钟源CK_PSC的时钟频率进行分频,输出CK_CNT脉冲供计数器CNT进行计数。

(3)计数器CNT

TIMxCNT是一个16位的寄存器,计数范围为1~65535,可以向上计数、向下计数或向下向上双向计数。
要得到想要的计数值,需要对输入时钟频率进行分频。
当计数值达到设定值时,便产生溢出事件,溢出时产生中断或DMA请求,然后再由自动装载寄存器进行重新加载或更新。
计数器溢出中断属于软件中断,执行相应的定时器中断服务程序。

(4)自动装载寄存器ARR

定时器的定时时间主要取决于定时周期和预分频因子,计算公式为:
定时时间=(ARR+1)×(预分频值PSC+1)/输入时钟频率
或 T=(TIM_Period +1)*(TIM_Prescaler +1)/TIMxCLK
这里ARR+1是因为计数器都是从0开始计数的。

3、高级定时器

功能:除具备通用定时器所有功能外,还具备带死区控制的互补信号输出、刹车输入等功能 (可用于电机控制、数字电源设计等)。

二、PWM工作原理

PWM(Pulse Width Modulation,脉冲宽度调制)是一种利用脉冲宽度即占空比实现对模拟信号进行控制的技术,即是对模拟信号电平进行数字表示的方法。
占空比(Duty Cycle),是指在一个周期内,高电平时间占整个信号周期的百分比,即高电平时间与周期的比值:
占空比=Tp/T
在这里插入图片描述

  • STM32的定时器除了TIM6和TIM7,其他定时器都可以用来产生PWM输出;
  • STM32中每个定时器有4个输入通道:TIMx_CH1~TIMx_CH4;
  • 每个通道对应1个捕获/比较寄存器TIMx_CRRx,将寄存器值和计数器值相比较,通过比较结果输出高低电平,从而得到PWM信号;
  • 脉冲宽度调制模式可以产生一个由TIMx_ARR寄存器确定频率、由TIMx_CCRx寄存器确定占空比的信号。

在这里插入图片描述
在PWM的一个周期内,定时器从0开始向上计数,在0-t1时间段,定时器计数器TIMx_CNT值小于TIMx_CCRx值,输出低电平;
在t1-t2时间段,定时器计数器TIMx_CNT值大于TIMx_CCRx值,输出高电平;
当定时器计数器的值TIMx_CNT达到ARR时,定时器溢出,重新从0开始向上计数,如此循环。

三、控制LED以2s的频率周期性地亮-灭

使用STM32F103的 Tim2~Tim5其一定时器的某一个通道pin,连接一个LED,用定时器计数方式,控制LED以2s的频率周期性地亮-灭。

引脚:GPIOB14
定时器:Tim2

1、STM32CubeMX建立项目

(1)配置RCC
在这里插入图片描述
(2)配置SYS
在这里插入图片描述
(3)选择GPIO引脚
在这里插入图片描述
(4)配置定时器Timer
在这里插入图片描述
(5)配置时钟树
在这里插入图片描述

由上文定时器定时时间的计算方法可知:
T=(ARR+1)×(预分频值PSC+1)/输入时钟频率
此处 ARR=6399 PSC=4999 输入时钟频率=16
T=5000 x 6400/16=2000000us=2s

(6)创建文件
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、代码编写

(1)在main文件的main函数中 "/* USER CODE BEGIN 2 / … / USER CODE END 2 */"之间加入该代码(省略号部分)

 HAL_TIM_Base_Start_IT(&htim2);

(2)在main文件的main函数中 "/* USER CODE BEGIN 4 / … / USER CODE END 4 */"之间加入该代码(省略号部分)

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{static unsigned char ledState = 0;if (htim == (&htim2)){if (ledState == 0)HAL_GPIO_WritePin(GPIOB,GPIO_PIN_14,GPIO_PIN_RESET);elseHAL_GPIO_WritePin(GPIOB,GPIO_PIN_14,GPIO_PIN_SET);ledState = !ledState;}
}

3、运行结果

在这里插入图片描述

四、STM32输出PWM完成呼吸灯

接上,采用定时器PWM模式,让 LED 以呼吸灯方式渐亮渐灭,周期为1~2秒,自己调整占空比变化到一个满意效果;使用Keil虚拟示波器,观察 PWM输出波形。

1、STM32CubeMX建立项目

(1)配置RCC
(2)配置SYS(前两步与上述一致)
(3)配置定时器Timer3
在这里插入图片描述

在这里插入图片描述
(4)配置时钟树
在这里插入图片描述
(5)创建文件
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、代码编写

main文件
占空比初始值为0,如果小于500(也就是PWM周期),设置每隔1毫秒,占空比加1;如果大于500,每隔一毫秒减1。

  /* USER CODE BEGIN 1 */uint16_t pwmVal=0;   //PWM占空比  uint8_t dir=1;  /* USER CODE END 1 */
  /* USER CODE BEGIN 2 */HAL_TIM_PWM_Start(&htim3,TIM_CHANNEL_1);/* USER CODE END 2 */
while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */while (pwmVal< 500){pwmVal++;__HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_1, pwmVal);    //修改比较值,修改占空比
//		  TIM3->CCR1 = pwmVal;    与上方相同HAL_Delay(1);}while (pwmVal){pwmVal--;__HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_1, pwmVal);    //修改比较值,修改占空比
//		  TIM3->CCR1 = pwmVal;     与上方相同HAL_Delay(1);}HAL_Delay(200);}/* USER CODE END 3 */

3、运行结果

在这里插入图片描述

4、逻辑分析仪

波形
在这里插入图片描述
由波形变化可知:
波形宽度由宽变窄,又由窄变宽对应着LED灯的亮度由暗变亮,又从亮变暗,与实践结果一致

总结

通过本次实验,了解到了可以使用定时器实现时间的控制和如何用PWM完成呼吸灯的设置,开心!!!

参考资料

https://blog.csdn.net/Morzart/article/details/134123197?spm=1001.2014.3001.5506
https://blog.csdn.net/superSmart_Dong/article/details/134565102?spm=1001.2014.3001.5506
https://blog.csdn.net/weixin_55376063/article/details/127595225?spm=1001.2014.3001.5502

这篇关于STM32定时器及输出PWM完成呼吸灯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015797

相关文章

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

顺序表之创建,判满,插入,输出

文章目录 🍊自我介绍🍊创建一个空的顺序表,为结构体在堆区分配空间🍊插入数据🍊输出数据🍊判断顺序表是否满了,满了返回值1,否则返回0🍊main函数 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞+关注+评论+收藏(一键四连)哦~ 🍊自我介绍   Hello,大家好,我是小珑也要变强(也是小珑),我是易编程·终身成长社群的一名“创始团队·嘉宾”

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

Java 后端接口入参 - 联合前端VUE 使用AES完成入参出参加密解密

加密效果: 解密后的数据就是正常数据: 后端:使用的是spring-cloud框架,在gateway模块进行操作 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>30.0-jre</version></dependency> 编写一个AES加密

STM32(十一):ADC数模转换器实验

AD单通道: 1.RCC开启GPIO和ADC时钟。配置ADCCLK分频器。 2.配置GPIO,把GPIO配置成模拟输入的模式。 3.配置多路开关,把左面通道接入到右面规则组列表里。 4.配置ADC转换器, 包括AD转换器和AD数据寄存器。单次转换,连续转换;扫描、非扫描;有几个通道,触发源是什么,数据对齐是左对齐还是右对齐。 5.ADC_CMD 开启ADC。 void RCC_AD

STM32内部闪存FLASH(内部ROM)、IAP

1 FLASH简介  1 利用程序存储器的剩余空间来保存掉电不丢失的用户数据 2 通过在程序中编程(IAP)实现程序的自我更新 (OTA) 3在线编程(ICP把整个程序都更新掉) 1 系统的Bootloader写死了,只能用串口下载到指定的位置,启动方式也不方便需要配置BOOT引脚触发启动  4 IAP(自己写的Bootloader,实现程序升级) 1 比如蓝牙转串口,

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类

STM32 ADC+DMA导致写FLASH失败

最近用STM32G070系列的ADC+DMA采样时,遇到了一些小坑记录一下; 一、ADC+DMA采样时进入死循环; 解决方法:ADC-dma死循环问题_stm32 adc dma死机-CSDN博客 将ADC的DMA中断调整为最高,且增大ADCHAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buffer, ADC_Buffer_Size); 的ADC_Bu

如何将一个文件里不包含某个字符的行输出到另一个文件?

第一种: grep -v 'string' filename > newfilenamegrep -v 'string' filename >> newfilename 第二种: sed -n '/string/!'p filename > newfilenamesed -n '/string/!'p filename >> newfilename